def run_task(snapshot_config, *_): """Run task.""" with LocalRunner(snapshot_config=snapshot_config) as runner: n_epochs = 100 n_epoch_cycles = 20 sampler_batch_size = 500 num_timesteps = n_epochs * n_epoch_cycles * sampler_batch_size env = gym.make('PongNoFrameskip-v4') env = Noop(env, noop_max=30) env = MaxAndSkip(env, skip=4) env = EpisodicLife(env) if 'FIRE' in env.unwrapped.get_action_meanings(): env = FireReset(env) env = Grayscale(env) env = Resize(env, 84, 84) env = ClipReward(env) env = StackFrames(env, 4) env = TfEnv(env) replay_buffer = SimpleReplayBuffer( env_spec=env.spec, size_in_transitions=int(5e4), time_horizon=1) qf = DiscreteCNNQFunction( env_spec=env.spec, filter_dims=(8, 4, 3), num_filters=(32, 64, 64), strides=(4, 2, 1), dueling=False) policy = DiscreteQfDerivedPolicy(env_spec=env.spec, qf=qf) epilson_greedy_strategy = EpsilonGreedyStrategy( env_spec=env.spec, total_timesteps=num_timesteps, max_epsilon=1.0, min_epsilon=0.02, decay_ratio=0.1) algo = DQN( env_spec=env.spec, policy=policy, qf=qf, exploration_strategy=epilson_greedy_strategy, replay_buffer=replay_buffer, qf_lr=1e-4, discount=0.99, min_buffer_size=int(1e4), double_q=False, n_train_steps=500, n_epoch_cycles=n_epoch_cycles, target_network_update_freq=2, buffer_batch_size=32) runner.setup(algo, env) runner.train( n_epochs=n_epochs, n_epoch_cycles=n_epoch_cycles, batch_size=sampler_batch_size)
def setup_lunar_lander_with_image_obs(env_name, num_frames, do_noops=False): from deepmdp.garage_mod.env_wrappers.stack_frames import StackFrames env = gym.make(env_name) env = LunarLanderToImageObservations(env) env = Grayscale(env) env = Resize(env, 84, 84) env = StackFrames(env, num_frames, do_noops=do_noops) return GarageEnv(env)
def setup_atari_env(env_name, num_frames): env = gym.make(env_name) env = Noop(env, noop_max=30) env = MaxAndSkip(env, skip=4) env = EpisodicLife(env) # Fire on reset as some envs are fixed until firing if 'FIRE' in env.unwrapped.get_action_meanings(): env = FireReset(env) env = Grayscale(env) env = Resize(env, 84, 84) env = ClipReward(env) env = StackFrames(env, num_frames) return GarageEnv(env)
def test_get_time_limit_finds_time_limit(): env = gym.make('PongNoFrameskip-v4') time_limit = env._max_episode_steps env = Noop(env, noop_max=30) env = MaxAndSkip(env, skip=4) env = EpisodicLife(env) env = Grayscale(env) env = Resize(env, 84, 84) env = ClipReward(env) env = StackFrames(env, 4) env = GymEnv(env) assert env._max_episode_length == time_limit
def watch_atari(saved_dir, env=None, num_episodes=10): """Watch a trained agent play an atari game. Args: saved_dir (str): Directory containing the pickle file. env (str): Environment to run episodes on. If None, the pickled environment is used. num_episodes (int): Number of episodes to play. Note that when using the EpisodicLife wrapper, an episode is considered done when a life is lost. Defaults to 10. """ snapshotter = Snapshotter() data = snapshotter.load(saved_dir) if env is not None: env = gym.make(env) env = Noop(env, noop_max=30) env = MaxAndSkip(env, skip=4) env = EpisodicLife(env) if 'FIRE' in env.unwrapped.get_action_meanings(): env = FireReset(env) env = Grayscale(env) env = Resize(env, 84, 84) env = ClipReward(env) env = StackFrames(env, 4, axis=0) env = GymEnv(env) else: env = data['env'] exploration_policy = data['algo'].exploration_policy exploration_policy.policy._qf.to('cpu') ep_rewards = np.asarray([]) for _ in range(num_episodes): episode_data = rollout(env, exploration_policy.policy, animated=True, pause_per_frame=0.02) ep_rewards = np.append(ep_rewards, np.sum(episode_data['rewards'])) print('Average Reward {}'.format(np.mean(ep_rewards)))
def dqn_pong(ctxt=None, seed=1, buffer_size=int(5e4), max_episode_length=500): """Train DQN on PongNoFrameskip-v4 environment. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. seed (int): Used to seed the random number generator to produce determinism. buffer_size (int): Number of timesteps to store in replay buffer. max_episode_length (int): Maximum length of an episode, after which an episode is considered complete. This is used during testing to minimize the memory required to store a single episode. """ set_seed(seed) with TFTrainer(ctxt) as trainer: n_epochs = 100 steps_per_epoch = 20 sampler_batch_size = 500 num_timesteps = n_epochs * steps_per_epoch * sampler_batch_size env = gym.make('PongNoFrameskip-v4') env = env.unwrapped env = Noop(env, noop_max=30) env = MaxAndSkip(env, skip=4) env = EpisodicLife(env) if 'FIRE' in env.unwrapped.get_action_meanings(): env = FireReset(env) env = Grayscale(env) env = Resize(env, 84, 84) env = ClipReward(env) env = StackFrames(env, 4) env = GymEnv(env, is_image=True, max_episode_length=max_episode_length) replay_buffer = PathBuffer(capacity_in_transitions=buffer_size) qf = DiscreteCNNQFunction(env_spec=env.spec, filters=( (32, (8, 8)), (64, (4, 4)), (64, (3, 3)), ), strides=(4, 2, 1), dueling=False) # yapf: disable policy = DiscreteQFArgmaxPolicy(env_spec=env.spec, qf=qf) exploration_policy = EpsilonGreedyPolicy(env_spec=env.spec, policy=policy, total_timesteps=num_timesteps, max_epsilon=1.0, min_epsilon=0.02, decay_ratio=0.1) algo = DQN(env_spec=env.spec, policy=policy, qf=qf, exploration_policy=exploration_policy, replay_buffer=replay_buffer, qf_lr=1e-4, discount=0.99, min_buffer_size=int(1e4), double_q=False, n_train_steps=500, steps_per_epoch=steps_per_epoch, target_network_update_freq=2, buffer_batch_size=32) trainer.setup(algo, env) trainer.train(n_epochs=n_epochs, batch_size=sampler_batch_size)
def dqn_atari(ctxt=None, env=None, seed=24, n_workers=psutil.cpu_count(logical=False), max_episode_length=None, **kwargs): """Train DQN with PongNoFrameskip-v4 environment. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. env (str): Name of the atari environment, eg. 'PongNoFrameskip-v4'. seed (int): Used to seed the random number generator to produce determinism. n_workers (int): Number of workers to use. Defaults to the number of CPU cores available. max_episode_length (int): Max length of an episode. If None, defaults to the timelimit specific to the environment. Used by integration tests. kwargs (dict): hyperparameters to be saved to variant.json. """ assert n_workers > 0 assert env is not None env = gym.make(env) env = Noop(env, noop_max=30) env = MaxAndSkip(env, skip=4) env = EpisodicLife(env) if 'FIRE' in env.unwrapped.get_action_meanings(): env = FireReset(env) env = Grayscale(env) env = Resize(env, 84, 84) env = ClipReward(env) env = StackFrames(env, 4, axis=0) env = GymEnv(env, max_episode_length=max_episode_length, is_image=True) set_seed(seed) trainer = Trainer(ctxt) n_epochs = hyperparams['n_epochs'] steps_per_epoch = hyperparams['steps_per_epoch'] sampler_batch_size = hyperparams['sampler_batch_size'] num_timesteps = n_epochs * steps_per_epoch * sampler_batch_size replay_buffer = PathBuffer( capacity_in_transitions=hyperparams['buffer_size']) qf = DiscreteCNNQFunction( env_spec=env.spec, image_format='NCHW', hidden_channels=hyperparams['hidden_channels'], kernel_sizes=hyperparams['kernel_sizes'], strides=hyperparams['strides'], hidden_w_init=( lambda x: torch.nn.init.orthogonal_(x, gain=np.sqrt(2))), hidden_sizes=hyperparams['hidden_sizes']) policy = DiscreteQFArgmaxPolicy(env_spec=env.spec, qf=qf) exploration_policy = EpsilonGreedyPolicy( env_spec=env.spec, policy=policy, total_timesteps=num_timesteps, max_epsilon=hyperparams['max_epsilon'], min_epsilon=hyperparams['min_epsilon'], decay_ratio=hyperparams['decay_ratio']) sampler = LocalSampler(agents=exploration_policy, envs=env, max_episode_length=env.spec.max_episode_length, worker_class=FragmentWorker, n_workers=n_workers) algo = DQN(env_spec=env.spec, policy=policy, qf=qf, exploration_policy=exploration_policy, replay_buffer=replay_buffer, sampler=sampler, steps_per_epoch=steps_per_epoch, qf_lr=hyperparams['lr'], clip_gradient=hyperparams['clip_gradient'], discount=hyperparams['discount'], min_buffer_size=hyperparams['min_buffer_size'], n_train_steps=hyperparams['n_train_steps'], target_update_freq=hyperparams['target_update_freq'], buffer_batch_size=hyperparams['buffer_batch_size']) set_gpu_mode(False) torch.set_num_threads(1) if torch.cuda.is_available(): set_gpu_mode(True) algo.to() trainer.setup(algo, env) trainer.train(n_epochs=n_epochs, batch_size=sampler_batch_size) env.close()
def run_task(snapshot_config, variant_data, *_): """Run task. Args: snapshot_config (garage.experiment.SnapshotConfig): The snapshot configuration used by LocalRunner to create the snapshotter. variant_data (dict): Custom arguments for the task. *_ (object): Ignored by this function. """ with LocalTFRunner(snapshot_config=snapshot_config) as runner: n_epochs = 100 steps_per_epoch = 20 sampler_batch_size = 500 num_timesteps = n_epochs * steps_per_epoch * sampler_batch_size env = gym.make('PongNoFrameskip-v4') env = Noop(env, noop_max=30) env = MaxAndSkip(env, skip=4) env = EpisodicLife(env) if 'FIRE' in env.unwrapped.get_action_meanings(): env = FireReset(env) env = Grayscale(env) env = Resize(env, 84, 84) env = ClipReward(env) env = StackFrames(env, 4) env = TfEnv(env) replay_buffer = SimpleReplayBuffer( env_spec=env.spec, size_in_transitions=variant_data['buffer_size'], time_horizon=1) qf = DiscreteCNNQFunction(env_spec=env.spec, filter_dims=(8, 4, 3), num_filters=(32, 64, 64), strides=(4, 2, 1), dueling=False) policy = DiscreteQfDerivedPolicy(env_spec=env.spec, qf=qf) epilson_greedy_strategy = EpsilonGreedyStrategy( env_spec=env.spec, total_timesteps=num_timesteps, max_epsilon=1.0, min_epsilon=0.02, decay_ratio=0.1) algo = DQN(env_spec=env.spec, policy=policy, qf=qf, exploration_strategy=epilson_greedy_strategy, replay_buffer=replay_buffer, qf_lr=1e-4, discount=0.99, min_buffer_size=int(1e4), double_q=False, n_train_steps=500, steps_per_epoch=steps_per_epoch, target_network_update_freq=2, buffer_batch_size=32) runner.setup(algo, env) runner.train(n_epochs=n_epochs, batch_size=sampler_batch_size)
def dqn_pong(ctxt=None, seed=1, buffer_size=int(5e4)): """Train DQN on PongNoFrameskip-v4 environment. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by LocalRunner to create the snapshotter. seed (int): Used to seed the random number generator to produce determinism. buffer_size (int): Number of timesteps to store in replay buffer. """ set_seed(seed) with LocalTFRunner(ctxt) as runner: n_epochs = 100 steps_per_epoch = 20 sampler_batch_size = 500 num_timesteps = n_epochs * steps_per_epoch * sampler_batch_size env = gym.make('PongNoFrameskip-v4') env = Noop(env, noop_max=30) env = MaxAndSkip(env, skip=4) env = EpisodicLife(env) if 'FIRE' in env.unwrapped.get_action_meanings(): env = FireReset(env) env = Grayscale(env) env = Resize(env, 84, 84) env = ClipReward(env) env = StackFrames(env, 4) env = TfEnv(env, is_image=True) replay_buffer = SimpleReplayBuffer(env_spec=env.spec, size_in_transitions=buffer_size, time_horizon=1) qf = DiscreteCNNQFunction(env_spec=env.spec, filter_dims=(8, 4, 3), num_filters=(32, 64, 64), strides=(4, 2, 1), dueling=False) policy = DiscreteQfDerivedPolicy(env_spec=env.spec, qf=qf) exploration_policy = EpsilonGreedyPolicy(env_spec=env.spec, policy=policy, total_timesteps=num_timesteps, max_epsilon=1.0, min_epsilon=0.02, decay_ratio=0.1) algo = DQN(env_spec=env.spec, policy=policy, qf=qf, exploration_policy=exploration_policy, replay_buffer=replay_buffer, qf_lr=1e-4, discount=0.99, min_buffer_size=int(1e4), double_q=False, n_train_steps=500, steps_per_epoch=steps_per_epoch, target_network_update_freq=2, buffer_batch_size=32) runner.setup(algo, env) runner.train(n_epochs=n_epochs, batch_size=sampler_batch_size)