Example #1
0
class TestScriptedPolicy:
    def setup_method(self):
        self.sp = ScriptedPolicy(scripted_actions=[1], agent_env_infos={0: 1})

    """
    potentially add more tests down the line
    """

    def test_pass_codecov(self):
        self.sp.get_action(0)
        self.sp.get_actions([0])
 def setup_method(self):
     self.env = TfEnv(GridWorldEnv(desc='4x4'))
     self.policy = ScriptedPolicy(
         scripted_actions=[2, 2, 1, 0, 3, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1])
     self.algo = Mock(env_spec=self.env.spec,
                      policy=self.policy,
                      max_path_length=16)
    def setup_method(self):
        ray.init(local_mode=True, ignore_reinit_error=True)

        self.env = TfEnv(GridWorldEnv(desc='4x4'))
        self.policy = ScriptedPolicy(
            scripted_actions=[2, 2, 1, 0, 3, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1])
        self.algo = Mock(
            env_spec=self.env.spec, policy=self.policy, max_path_length=16)
Example #4
0
def test_obtain_samples(ray_local_session_fixture):
    del ray_local_session_fixture
    env = GarageEnv(GridWorldEnv(desc='4x4'))
    policy = ScriptedPolicy(
        scripted_actions=[2, 2, 1, 0, 3, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1])
    algo = Mock(env_spec=env.spec, policy=policy, max_path_length=16)

    assert ray.is_initialized()
    workers = WorkerFactory(seed=100,
                            max_path_length=algo.max_path_length,
                            n_workers=8)
    sampler1 = RaySampler.from_worker_factory(workers, policy, env)
    sampler2 = LocalSampler.from_worker_factory(workers, policy, env)
    trajs1 = sampler1.obtain_samples(0, 1000,
                                     tuple(algo.policy.get_param_values()))
    trajs2 = sampler2.obtain_samples(0, 1000,
                                     tuple(algo.policy.get_param_values()))

    assert trajs1.observations.shape[0] >= 1000
    assert trajs1.actions.shape[0] >= 1000
    assert (sum(trajs1.rewards[:trajs1.lengths[0]]) == sum(
        trajs2.rewards[:trajs2.lengths[0]]) == 1)

    true_obs = np.array([0, 1, 2, 6, 10, 14])
    true_actions = np.array([2, 2, 1, 1, 1, 2])
    true_rewards = np.array([0, 0, 0, 0, 0, 1])
    start = 0
    for length in trajs1.lengths:
        observations = trajs1.observations[start:start + length]
        actions = trajs1.actions[start:start + length]
        rewards = trajs1.rewards[start:start + length]
        assert np.array_equal(observations, true_obs)
        assert np.array_equal(actions, true_actions)
        assert np.array_equal(rewards, true_rewards)
        start += length
    sampler1.shutdown_worker()
    sampler2.shutdown_worker()
    env.close()
Example #5
0
def test_obtain_samples():
    env = GarageEnv(GridWorldEnv(desc='4x4'))
    policy = ScriptedPolicy(
        scripted_actions=[2, 2, 1, 0, 3, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1])
    algo = Mock(env_spec=env.spec, policy=policy, max_episode_length=16)

    workers = WorkerFactory(seed=100,
                            max_episode_length=algo.max_episode_length,
                            n_workers=8)
    sampler1 = MultiprocessingSampler.from_worker_factory(workers, policy, env)
    sampler2 = LocalSampler.from_worker_factory(workers, policy, env)
    trajs1 = sampler1.obtain_samples(0, 1000,
                                     tuple(algo.policy.get_param_values()))
    trajs2 = sampler2.obtain_samples(0, 1000,
                                     tuple(algo.policy.get_param_values()))
    # pylint: disable=superfluous-parens
    assert trajs1.observations.shape[0] >= 1000
    assert trajs1.actions.shape[0] >= 1000
    assert (sum(trajs1.rewards[:trajs1.lengths[0]]) == sum(
        trajs2.rewards[:trajs2.lengths[0]]) == 1)

    true_obs = np.array([0, 1, 2, 6, 10, 14])
    true_actions = np.array([2, 2, 1, 1, 1, 2])
    true_rewards = np.array([0, 0, 0, 0, 0, 1])
    start = 0
    for length in trajs1.lengths:
        observations = trajs1.observations[start:start + length]
        actions = trajs1.actions[start:start + length]
        rewards = trajs1.rewards[start:start + length]
        assert np.array_equal(observations, true_obs)
        assert np.array_equal(actions, true_actions)
        assert np.array_equal(rewards, true_rewards)
        start += length
    sampler1.shutdown_worker()
    sampler2.shutdown_worker()
    env.close()
Example #6
0
def policy():
    return ScriptedPolicy(
        scripted_actions=[2, 2, 1, 0, 3, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1])
Example #7
0
 def setup_method(self):
     self.sp = ScriptedPolicy(scripted_actions=[1], agent_env_infos={0: 1})