Example #1
0
    def test_output_values_dueling(self, output_dim, hidden_sizes):
        model = MLPDuelingModel(output_dim=output_dim,
                                hidden_sizes=hidden_sizes,
                                hidden_nonlinearity=None,
                                hidden_w_init=tf.ones_initializer(),
                                output_w_init=tf.ones_initializer())
        outputs = model.build(self.input_var).outputs
        output = self.sess.run(outputs, feed_dict={self.input_var: self.obs})

        expected_output = np.full([1, output_dim], 5 * np.prod(hidden_sizes))

        assert np.array_equal(output, expected_output)
    def __init__(self,
                 env_spec,
                 name=None,
                 hidden_sizes=(32, 32),
                 hidden_nonlinearity=tf.nn.relu,
                 hidden_w_init=tf.initializers.glorot_uniform(),
                 hidden_b_init=tf.zeros_initializer(),
                 output_nonlinearity=None,
                 output_w_init=tf.initializers.glorot_uniform(),
                 output_b_init=tf.zeros_initializer(),
                 dueling=False,
                 layer_normalization=False):
        super().__init__(name)

        self._env_spec = env_spec
        self._hidden_sizes = hidden_sizes
        self._hidden_nonlinearity = hidden_nonlinearity
        self._hidden_w_init = hidden_w_init
        self._hidden_b_init = hidden_b_init
        self._output_nonlinearity = output_nonlinearity
        self._output_w_init = output_w_init
        self._output_b_init = output_b_init
        self._dueling = dueling
        self._layer_normalization = layer_normalization

        self.obs_dim = env_spec.observation_space.shape
        action_dim = env_spec.action_space.flat_dim

        if not dueling:
            self.model = MLPModel(output_dim=action_dim,
                                  hidden_sizes=hidden_sizes,
                                  hidden_nonlinearity=hidden_nonlinearity,
                                  hidden_w_init=hidden_w_init,
                                  hidden_b_init=hidden_b_init,
                                  output_nonlinearity=output_nonlinearity,
                                  output_w_init=output_w_init,
                                  output_b_init=output_b_init,
                                  layer_normalization=layer_normalization)
        else:
            self.model = MLPDuelingModel(
                output_dim=action_dim,
                hidden_sizes=hidden_sizes,
                hidden_nonlinearity=hidden_nonlinearity,
                hidden_w_init=hidden_w_init,
                hidden_b_init=hidden_b_init,
                output_nonlinearity=output_nonlinearity,
                output_w_init=output_w_init,
                output_b_init=output_b_init,
                layer_normalization=layer_normalization)

        self._network = None

        self._initialize()
class DiscreteMLPQFunction(QFunction2):
    """
    Discrete MLP Q Function.

    This class implements a Q-value network. It predicts Q-value based on the
    input state and action. It uses an MLP to fit the function Q(s, a).

    Args:
        env_spec (garage.envs.env_spec.EnvSpec): Environment specification.
        name (str): Name of the q-function, also serves as the variable scope.
        hidden_sizes (list[int]): Output dimension of dense layer(s).
            For example, (32, 32) means the MLP of this q-function consists of
            two hidden layers, each with 32 hidden units.
        hidden_nonlinearity (callable): Activation function for intermediate
            dense layer(s). It should return a tf.Tensor. Set it to
            None to maintain a linear activation.
        hidden_w_init (callable): Initializer function for the weight
            of intermediate dense layer(s). The function should return a
            tf.Tensor.
        hidden_b_init (callable): Initializer function for the bias
            of intermediate dense layer(s). The function should return a
            tf.Tensor.
        output_nonlinearity (callable): Activation function for output dense
            layer. It should return a tf.Tensor. Set it to None to
            maintain a linear activation.
        output_w_init (callable): Initializer function for the weight
            of output dense layer(s). The function should return a
            tf.Tensor.
        output_b_init (callable): Initializer function for the bias
            of output dense layer(s). The function should return a
            tf.Tensor.
        layer_normalization (bool): Bool for using layer normalization.
    """
    def __init__(self,
                 env_spec,
                 name=None,
                 hidden_sizes=(32, 32),
                 hidden_nonlinearity=tf.nn.relu,
                 hidden_w_init=tf.glorot_uniform_initializer(),
                 hidden_b_init=tf.zeros_initializer(),
                 output_nonlinearity=None,
                 output_w_init=tf.glorot_uniform_initializer(),
                 output_b_init=tf.zeros_initializer(),
                 dueling=False,
                 layer_normalization=False):
        super().__init__(name)

        self._env_spec = env_spec
        self._hidden_sizes = hidden_sizes
        self._hidden_nonlinearity = hidden_nonlinearity
        self._hidden_w_init = hidden_w_init
        self._hidden_b_init = hidden_b_init
        self._output_nonlinearity = output_nonlinearity
        self._output_w_init = output_w_init
        self._output_b_init = output_b_init
        self._dueling = dueling
        self._layer_normalization = layer_normalization

        self.obs_dim = env_spec.observation_space.shape
        action_dim = env_spec.action_space.flat_dim

        if not dueling:
            self.model = MLPModel(output_dim=action_dim,
                                  hidden_sizes=hidden_sizes,
                                  hidden_nonlinearity=hidden_nonlinearity,
                                  hidden_w_init=hidden_w_init,
                                  hidden_b_init=hidden_b_init,
                                  output_nonlinearity=output_nonlinearity,
                                  output_w_init=output_w_init,
                                  output_b_init=output_b_init,
                                  layer_normalization=layer_normalization)
        else:
            self.model = MLPDuelingModel(
                output_dim=action_dim,
                hidden_sizes=hidden_sizes,
                hidden_nonlinearity=hidden_nonlinearity,
                hidden_w_init=hidden_w_init,
                hidden_b_init=hidden_b_init,
                output_nonlinearity=output_nonlinearity,
                output_w_init=output_w_init,
                output_b_init=output_b_init,
                layer_normalization=layer_normalization)

        self._initialize()

    def _initialize(self):
        obs_ph = tf.compat.v1.placeholder(tf.float32, (None, ) + self.obs_dim,
                                          name='obs')

        with tf.compat.v1.variable_scope(self.name) as vs:
            self._variable_scope = vs
            self.model.build(obs_ph)

    @property
    def q_vals(self):
        return self.model.networks['default'].outputs

    @property
    def input(self):
        return self.model.networks['default'].input

    @overrides
    def get_qval_sym(self, state_input, name):
        """
        Symbolic graph for q-network.

        Args:
            state_input (tf.Tensor): The state input tf.Tensor to the network.
            name (str): Network variable scope.

        Return:
            The tf.Tensor output of Discrete MLP QFunction.
        """
        with tf.compat.v1.variable_scope(self._variable_scope):
            return self.model.build(state_input, name=name)

    def clone(self, name):
        """
        Return a clone of the Q-function.

        It only copies the configuration of the Q-function,
        not the parameters.

        Args:
            name (str): Name of the newly created q-function.
        """
        return self.__class__(name=name,
                              env_spec=self._env_spec,
                              hidden_sizes=self._hidden_sizes,
                              hidden_nonlinearity=self._hidden_nonlinearity,
                              hidden_w_init=self._hidden_w_init,
                              hidden_b_init=self._hidden_b_init,
                              output_nonlinearity=self._output_nonlinearity,
                              output_w_init=self._output_w_init,
                              output_b_init=self._output_b_init,
                              dueling=self._dueling,
                              layer_normalization=self._layer_normalization)

    def __setstate__(self, state):
        """Object.__setstate__."""
        self.__dict__.update(state)
        self._initialize()
Example #4
0
    def __init__(self,
                 env_spec,
                 filters,
                 strides,
                 hidden_sizes=(256, ),
                 name=None,
                 padding='SAME',
                 max_pooling=False,
                 pool_strides=(2, 2),
                 pool_shapes=(2, 2),
                 cnn_hidden_nonlinearity=tf.nn.relu,
                 hidden_nonlinearity=tf.nn.relu,
                 hidden_w_init=tf.initializers.glorot_uniform(),
                 hidden_b_init=tf.zeros_initializer(),
                 output_nonlinearity=None,
                 output_w_init=tf.initializers.glorot_uniform(),
                 output_b_init=tf.zeros_initializer(),
                 dueling=False,
                 layer_normalization=False):
        if not isinstance(env_spec.observation_space, akro.Box) or \
                not len(env_spec.observation_space.shape) in (2, 3):
            raise ValueError(
                '{} can only process 2D, 3D akro.Image or'
                ' akro.Box observations, but received an env_spec with '
                'observation_space of type {} and shape {}'.format(
                    type(self).__name__,
                    type(env_spec.observation_space).__name__,
                    env_spec.observation_space.shape))

        super().__init__(name)
        self._env_spec = env_spec
        self._action_dim = env_spec.action_space.n
        self._filters = filters
        self._strides = strides
        self._hidden_sizes = hidden_sizes
        self._padding = padding
        self._max_pooling = max_pooling
        self._pool_strides = pool_strides
        self._pool_shapes = pool_shapes
        self._cnn_hidden_nonlinearity = cnn_hidden_nonlinearity
        self._hidden_nonlinearity = hidden_nonlinearity
        self._hidden_w_init = hidden_w_init
        self._hidden_b_init = hidden_b_init
        self._output_nonlinearity = output_nonlinearity
        self._output_w_init = output_w_init
        self._output_b_init = output_b_init
        self._layer_normalization = layer_normalization
        self._dueling = dueling

        self.obs_dim = self._env_spec.observation_space.shape
        action_dim = self._env_spec.action_space.flat_dim

        if not max_pooling:
            cnn_model = CNNModel(filters=filters,
                                 strides=strides,
                                 padding=padding,
                                 hidden_nonlinearity=cnn_hidden_nonlinearity)
        else:
            cnn_model = CNNModelWithMaxPooling(
                filters=filters,
                strides=strides,
                padding=padding,
                pool_strides=pool_strides,
                pool_shapes=pool_shapes,
                hidden_nonlinearity=cnn_hidden_nonlinearity)
        if not dueling:
            output_model = MLPModel(output_dim=action_dim,
                                    hidden_sizes=hidden_sizes,
                                    hidden_nonlinearity=hidden_nonlinearity,
                                    hidden_w_init=hidden_w_init,
                                    hidden_b_init=hidden_b_init,
                                    output_nonlinearity=output_nonlinearity,
                                    output_w_init=output_w_init,
                                    output_b_init=output_b_init,
                                    layer_normalization=layer_normalization)
        else:
            output_model = MLPDuelingModel(
                output_dim=action_dim,
                hidden_sizes=hidden_sizes,
                hidden_nonlinearity=hidden_nonlinearity,
                hidden_w_init=hidden_w_init,
                hidden_b_init=hidden_b_init,
                output_nonlinearity=output_nonlinearity,
                output_w_init=output_w_init,
                output_b_init=output_b_init,
                layer_normalization=layer_normalization)

        self.model = Sequential(cnn_model, output_model)

        self._initialize()
    def __init__(self,
                 env_spec,
                 filter_dims,
                 num_filters,
                 strides,
                 hidden_sizes=[256],
                 name=None,
                 padding='SAME',
                 max_pooling=False,
                 pool_strides=(2, 2),
                 pool_shapes=(2, 2),
                 cnn_hidden_nonlinearity=tf.nn.relu,
                 hidden_nonlinearity=tf.nn.relu,
                 hidden_w_init=tf.glorot_uniform_initializer(),
                 hidden_b_init=tf.zeros_initializer(),
                 output_nonlinearity=None,
                 output_w_init=tf.glorot_uniform_initializer(),
                 output_b_init=tf.zeros_initializer(),
                 dueling=False,
                 layer_normalization=False):
        super().__init__(name)
        self._env_spec = env_spec
        self._action_dim = env_spec.action_space.n
        self._filter_dims = filter_dims
        self._num_filters = num_filters
        self._strides = strides
        self._hidden_sizes = hidden_sizes
        self._padding = padding
        self._max_pooling = max_pooling
        self._pool_strides = pool_strides
        self._pool_shapes = pool_shapes
        self._cnn_hidden_nonlinearity = cnn_hidden_nonlinearity
        self._hidden_nonlinearity = hidden_nonlinearity
        self._hidden_w_init = hidden_w_init
        self._hidden_b_init = hidden_b_init
        self._output_nonlinearity = output_nonlinearity
        self._output_w_init = output_w_init
        self._output_b_init = output_b_init
        self._layer_normalization = layer_normalization
        self._dueling = dueling

        self.obs_dim = self._env_spec.observation_space.shape
        action_dim = self._env_spec.action_space.flat_dim

        if not max_pooling:
            cnn_model = CNNModel(filter_dims=filter_dims,
                                 num_filters=num_filters,
                                 strides=strides,
                                 padding=padding,
                                 hidden_nonlinearity=cnn_hidden_nonlinearity)
        else:
            cnn_model = CNNModelWithMaxPooling(
                filter_dims=filter_dims,
                num_filters=num_filters,
                strides=strides,
                padding=padding,
                pool_strides=pool_strides,
                pool_shapes=pool_shapes,
                hidden_nonlinearity=cnn_hidden_nonlinearity)
        if not dueling:
            output_model = MLPModel(output_dim=action_dim,
                                    hidden_sizes=hidden_sizes,
                                    hidden_nonlinearity=hidden_nonlinearity,
                                    hidden_w_init=hidden_w_init,
                                    hidden_b_init=hidden_b_init,
                                    output_nonlinearity=output_nonlinearity,
                                    output_w_init=output_w_init,
                                    output_b_init=output_b_init,
                                    layer_normalization=layer_normalization)
        else:
            output_model = MLPDuelingModel(
                output_dim=action_dim,
                hidden_sizes=hidden_sizes,
                hidden_nonlinearity=hidden_nonlinearity,
                hidden_w_init=hidden_w_init,
                hidden_b_init=hidden_b_init,
                output_nonlinearity=output_nonlinearity,
                output_w_init=output_w_init,
                output_b_init=output_b_init,
                layer_normalization=layer_normalization)

        self.model = Sequential(cnn_model, output_model)

        self._initialize()