Example #1
0
File: gsa.py Project: zemlni/GAT
def reg():
    case_num = request.args.get('case_num', None)
    fileDict = dao.getFileDict(case_num)
    GSA_file_CSV = fileDict.get('GSA_Input_CSV')
    GSA_file_SHP = fileDict.get('GSA_Input_SHP')
    gsa_meta = fileDict.get('GSA_meta')
    svgNaming = fileDict.get('GSA_data')[0]
    with open('out/gsa/mymap.svg', 'r') as myfile:
        mymap = myfile.read()

    mymap = mymap.replace('"', "'")

    observations = weights.extractObservations(GSA_file_CSV, "ALL",
                                               gsa_meta[3])
    w = weights.generateWeightsUsingShapefile(GSA_file_SHP,
                                              idVariable=gsa_meta[2])

    regions = regionalization.generateRegions(w=w,
                                              observations=observations)[0]
    regions = regionalization.getNamesFromRegions(regions)
    nameMapping = util.getNameMapping('out/gsa/mymap.svg', gsa_meta[0],
                                      gsa_meta[1])
    nameMapping = {
        key: value.replace("'", "APOSTROPHE")
        for key, value in nameMapping.items()
    }
    numRegs = len(set(regions.values()))
    return render_template("regionalization.html",
                           case_num=case_num,
                           mymap=json.dumps(mymap),
                           regions=json.dumps(regions),
                           numRegs=numRegs,
                           svgNaming=svgNaming,
                           nameMapping=json.dumps(str(nameMapping)))
Example #2
0
def runGSA(case_num, autocorrelationRows, autocorrelationCols, sdRows, sdCols, idVariable):
    fileDict = dao.getFileDict(case_num)
    observations = weights.extractObservations(fileDict['GSA_Input_CSV'], autocorrelationRows, autocorrelationCols)
    w = weights.generateWeightsUsingShapefile(fileDict['GSA_Input_SHP'], idVariable=idVariable)
    globalAutoCorrelation = autocorrelation.globalAutocorrelation(observations, w)
    localAutoCorrelation = autocorrelation.localAutocorrelation(observations, w)
    observations = weights.extractObservations(fileDict['GSA_Input_CSV'], sdRows, sdCols)
    spatialDynamics = spatial_dynamics.markov(observations, w, method="spatial")
    return localAutoCorrelation, globalAutoCorrelation, spatialDynamics