Example #1
0
def temp_pipeline_engine(calendar, sids, random_seed, symbols=None):
    """
    A contextManager that yields a SimplePipelineEngine holding a reference to
    an AssetFinder generated via tmp_asset_finder.

    Parameters
    ----------
    calendar : pd.DatetimeIndex
        Calendar to pass to the constructed PipelineEngine.
    sids : iterable[int]
        Sids to use for the temp asset finder.
    random_seed : int
        Integer used to seed instances of SeededRandomLoader.
    symbols : iterable[str], optional
        Symbols for constructed assets. Forwarded to make_simple_equity_info.
    """
    equity_info = make_simple_equity_info(
        sids=sids,
        start_date=calendar[0],
        end_date=calendar[-1],
        symbols=symbols,
    )

    loader = make_seeded_random_loader(random_seed, calendar, sids)

    def get_loader(column):
        return loader

    with tmp_asset_finder(equities=equity_info) as finder:
        yield SimplePipelineEngine(get_loader, calendar, finder)
Example #2
0
    def __init__(self,
                 url='sqlite:///:memory:',
                 equities=_default_equities,
                 **frames):
        self._url = url
        self._eng = None
        if equities is self._default_equities:
            equities = make_simple_equity_info(
                list(map(ord, 'ABC')),
                pd.Timestamp(0),
                pd.Timestamp('2015'),
            )

        frames['equities'] = equities
        self._frames = frames
        self._eng = None  # set in enter and exit
Example #3
0
        def bundle_ingest_create_writers(environ, asset_db_writer,
                                         minute_bar_writer, daily_bar_writer,
                                         adjustment_writer, calendar,
                                         start_session, end_session, cache,
                                         show_progress, output_dir):
            self.assertIsNotNone(asset_db_writer)
            self.assertIsNotNone(minute_bar_writer)
            self.assertIsNotNone(daily_bar_writer)
            self.assertIsNotNone(adjustment_writer)

            equities = make_simple_equity_info(
                tuple(range(3)),
                self.START_DATE,
                self.END_DATE,
            )
            asset_db_writer.write(equities=equities)
            called[0] = True
Example #4
0
    def test_ingest(self):
        calendar = get_calendar('NYSE')
        sessions = calendar.sessions_in_range(self.START_DATE, self.END_DATE)
        minutes = calendar.minutes_for_sessions_in_range(
            self.START_DATE,
            self.END_DATE,
        )

        sids = tuple(range(3))
        equities = make_simple_equity_info(
            sids,
            self.START_DATE,
            self.END_DATE,
        )

        daily_bar_data = make_bar_data(equities, sessions)
        minute_bar_data = make_bar_data(equities, minutes)
        first_split_ratio = 0.5
        second_split_ratio = 0.1
        splits = pd.DataFrame.from_records([
            {
                'effective_date': str_to_seconds('2014-01-08'),
                'ratio': first_split_ratio,
                'sid': 0,
            },
            {
                'effective_date': str_to_seconds('2014-01-09'),
                'ratio': second_split_ratio,
                'sid': 1,
            },
        ])

        @self.register(
            'bundle',
            calendar_name='NYSE',
            start_session=self.START_DATE,
            end_session=self.END_DATE,
        )
        def bundle_ingest(environ, asset_db_writer, minute_bar_writer,
                          daily_bar_writer, adjustment_writer, calendar,
                          start_session, end_session, cache, show_progress,
                          output_dir):
            assert_is(environ, self.environ)

            asset_db_writer.write(equities=equities)
            minute_bar_writer.write(minute_bar_data)
            daily_bar_writer.write(daily_bar_data)
            adjustment_writer.write(splits=splits)

            assert_is_instance(calendar, TradingCalendar)
            assert_is_instance(cache, dataframe_cache)
            assert_is_instance(show_progress, bool)

        self.ingest('bundle', environ=self.environ)
        bundle = self.load('bundle', environ=self.environ)

        assert_equal(set(bundle.asset_finder.sids), set(sids))

        columns = 'open', 'high', 'low', 'close', 'volume'

        actual = bundle.equity_minute_bar_reader.load_raw_arrays(
            columns,
            minutes[0],
            minutes[-1],
            sids,
        )

        for actual_column, colname in zip(actual, columns):
            assert_equal(
                actual_column,
                expected_bar_values_2d(minutes, equities, colname),
                msg=colname,
            )

        actual = bundle.equity_daily_bar_reader.load_raw_arrays(
            columns,
            self.START_DATE,
            self.END_DATE,
            sids,
        )
        for actual_column, colname in zip(actual, columns):
            assert_equal(
                actual_column,
                expected_bar_values_2d(sessions, equities, colname),
                msg=colname,
            )
        adjustments_for_cols = bundle.adjustment_reader.load_adjustments(
            columns,
            sessions,
            pd.Index(sids),
        )
        for column, adjustments in zip(columns, adjustments_for_cols[:-1]):
            # iterate over all the adjustments but `volume`
            assert_equal(
                adjustments,
                {
                    2: [
                        Float64Multiply(
                            first_row=0,
                            last_row=2,
                            first_col=0,
                            last_col=0,
                            value=first_split_ratio,
                        )
                    ],
                    3: [
                        Float64Multiply(
                            first_row=0,
                            last_row=3,
                            first_col=1,
                            last_col=1,
                            value=second_split_ratio,
                        )
                    ],
                },
                msg=column,
            )

        # check the volume, the value should be 1/ratio
        assert_equal(
            adjustments_for_cols[-1],
            {
                2: [
                    Float64Multiply(
                        first_row=0,
                        last_row=2,
                        first_col=0,
                        last_col=0,
                        value=1 / first_split_ratio,
                    )
                ],
                3: [
                    Float64Multiply(
                        first_row=0,
                        last_row=3,
                        first_col=1,
                        last_col=1,
                        value=1 / second_split_ratio,
                    )
                ],
            },
            msg='volume',
        )
Example #5
0
    def transaction_sim(self, **params):
        """This is a utility method that asserts expected
        results for conversion of orders to transactions given a
        trade history
        """
        trade_count = params['trade_count']
        trade_interval = params['trade_interval']
        order_count = params['order_count']
        order_amount = params['order_amount']
        order_interval = params['order_interval']
        expected_txn_count = params['expected_txn_count']
        expected_txn_volume = params['expected_txn_volume']

        # optional parameters
        # ---------------------
        # if present, alternate between long and short sales
        alternate = params.get('alternate')

        # if present, expect transaction amounts to match orders exactly.
        complete_fill = params.get('complete_fill')

        asset1 = self.asset_finder.retrieve_asset(1)
        metadata = make_simple_equity_info([asset1.sid], self.start, self.end)
        with TempDirectory() as tempdir, \
                tmp_trading_env(equities=metadata,
                                load=self.make_load_function()) as env:

            if trade_interval < timedelta(days=1):
                sim_params = factory.create_simulation_parameters(
                    start=self.start, end=self.end, data_frequency="minute")

                minutes = self.trading_calendar.minutes_window(
                    sim_params.first_open,
                    int((trade_interval.total_seconds() / 60) * trade_count) +
                    100)

                price_data = np.array([10.1] * len(minutes))
                assets = {
                    asset1.sid:
                    pd.DataFrame({
                        "open": price_data,
                        "high": price_data,
                        "low": price_data,
                        "close": price_data,
                        "volume": np.array([100] * len(minutes)),
                        "dt": minutes
                    }).set_index("dt")
                }

                write_bcolz_minute_data(
                    self.trading_calendar,
                    self.trading_calendar.sessions_in_range(
                        self.trading_calendar.minute_to_session_label(
                            minutes[0]),
                        self.trading_calendar.minute_to_session_label(
                            minutes[-1])),
                    tempdir.path,
                    iteritems(assets),
                )

                equity_minute_reader = BcolzMinuteBarReader(tempdir.path)

                data_portal = DataPortal(
                    env.asset_finder,
                    self.trading_calendar,
                    first_trading_day=equity_minute_reader.first_trading_day,
                    equity_minute_reader=equity_minute_reader,
                )
            else:
                sim_params = factory.create_simulation_parameters(
                    data_frequency="daily")

                days = sim_params.sessions

                assets = {
                    1:
                    pd.DataFrame(
                        {
                            "open": [10.1] * len(days),
                            "high": [10.1] * len(days),
                            "low": [10.1] * len(days),
                            "close": [10.1] * len(days),
                            "volume": [100] * len(days),
                            "day": [day.value for day in days]
                        },
                        index=days)
                }

                path = os.path.join(tempdir.path, "testdata.bcolz")
                BcolzDailyBarWriter(path, self.trading_calendar, days[0],
                                    days[-1]).write(assets.items())

                equity_daily_reader = BcolzDailyBarReader(path)

                data_portal = DataPortal(
                    env.asset_finder,
                    self.trading_calendar,
                    first_trading_day=equity_daily_reader.first_trading_day,
                    equity_daily_reader=equity_daily_reader,
                )

            if "default_slippage" not in params or \
               not params["default_slippage"]:
                slippage_func = FixedSlippage()
            else:
                slippage_func = None

            blotter = Blotter(sim_params.data_frequency, slippage_func)

            start_date = sim_params.first_open

            if alternate:
                alternator = -1
            else:
                alternator = 1

            tracker = PerformanceTracker(sim_params, self.trading_calendar,
                                         self.env)

            # replicate what tradesim does by going through every minute or day
            # of the simulation and processing open orders each time
            if sim_params.data_frequency == "minute":
                ticks = minutes
            else:
                ticks = days

            transactions = []

            order_list = []
            order_date = start_date
            for tick in ticks:
                blotter.current_dt = tick
                if tick >= order_date and len(order_list) < order_count:
                    # place an order
                    direction = alternator**len(order_list)
                    order_id = blotter.order(asset1, order_amount * direction,
                                             MarketOrder())
                    order_list.append(blotter.orders[order_id])
                    order_date = order_date + order_interval
                    # move after market orders to just after market next
                    # market open.
                    if order_date.hour >= 21:
                        if order_date.minute >= 00:
                            order_date = order_date + timedelta(days=1)
                            order_date = order_date.replace(hour=14, minute=30)
                else:
                    bar_data = BarData(
                        data_portal=data_portal,
                        simulation_dt_func=lambda: tick,
                        data_frequency=sim_params.data_frequency,
                        trading_calendar=self.trading_calendar,
                        restrictions=NoRestrictions(),
                    )
                    txns, _, closed_orders = blotter.get_transactions(bar_data)
                    for txn in txns:
                        tracker.process_transaction(txn)
                        transactions.append(txn)

                    blotter.prune_orders(closed_orders)

            for i in range(order_count):
                order = order_list[i]
                self.assertEqual(order.asset, asset1)
                self.assertEqual(order.amount, order_amount * alternator**i)

            if complete_fill:
                self.assertEqual(len(transactions), len(order_list))

            total_volume = 0
            for i in range(len(transactions)):
                txn = transactions[i]
                total_volume += txn.amount
                if complete_fill:
                    order = order_list[i]
                    self.assertEqual(order.amount, txn.amount)

            self.assertEqual(total_volume, expected_txn_volume)

            self.assertEqual(len(transactions), expected_txn_count)

            cumulative_pos = tracker.position_tracker.positions[asset1]
            if total_volume == 0:
                self.assertIsNone(cumulative_pos)
            else:
                self.assertEqual(total_volume, cumulative_pos.amount)

            # the open orders should not contain the asset.
            oo = blotter.open_orders
            self.assertNotIn(asset1, oo,
                             "Entry is removed when no open orders")