def __init__(self, n_agents, map_name='default_small'): self.n_agents = n_agents self.env = GatheringEnv(n_agents)
type=int, default=543, metavar='N', help='random seed (default: 543)') parser.add_argument('--render', default=True, action='store_true', help='render the environment') parser.add_argument('--log-interval', type=int, default=2, metavar='N', help='interval between training status logs (default: 10)') args = parser.parse_args() env = GatheringEnv(2, "default_small2") #"mini_map") # gym.make('CartPole-v1') env.seed(args.seed) torch.manual_seed(args.seed) # agentParam = model_name = "gathering_social_" #gathering_1" file_name = "save_weight/" + model_name ifload = False save_eps = 20 ifsave_model = True # logger = Logger('./logs5') agentParam = { "gamma": args.gamma, "LR": 1e-2, "device": device,
type=int, default=543, metavar='N', help='random seed (default: 543)') parser.add_argument('--render', action='store_true', help='render the environment') parser.add_argument('--log-interval', type=int, default=5, metavar='N', help='interval between training status logs (default: 10)') args = parser.parse_args() n_agents = 2 env = GatheringEnv(n_agents, "default_small2") env.seed(args.seed) torch.manual_seed(args.seed) test_mode = False names = { "social": "pg_social", "base": "pg_indi", "single": "pg_single_less", "forbid": "base_forbid" } mode = "base" model_name = names[mode] file_name = "train_para/" + model_name agentParam = {
type=int, default=543, metavar='N', help='random seed (default: 543)') parser.add_argument('--render', default=True, action='store_true', help='render the environment') parser.add_argument('--log-interval', type=int, default=2, metavar='N', help='interval between training status logs (default: 10)') args = parser.parse_args() env = GatheringEnv(2, "default_small2") env.seed(args.seed) torch.manual_seed(args.seed) # agentParam = model_name = "gathering_centIAC" #"gathering_social_share"#"gathering_social_v1"#gathering_1" file_name = "save_weight/" + model_name ifload = False save_eps = 20 ifsave_model = True # logger = Logger('./logs5') agentParam = { "gamma": args.gamma, "LR": 1e-2, "device": device,
def init_env(): env = env_wrapper(GatheringEnv( 2, "default_small2")) #env_wrapper(CleanupEnv(num_agents=4)) # env.seed(seed + rank * 1000) np.random.seed(seed + rank * 1000) return env
parser.add_argument('--render', default=False, action='store_true', help='render the environment') parser.add_argument( '--log-interval', type=int, default=2, metavar='N', help='interval between training status logs0 (default: 10)') args = parser.parse_args() n_agents = 2 state_dim = 400 action_dim = 8 env = GatheringEnv(2, "default_small2") torch.manual_seed(args.seed) # agentParam = model_name = "gathering_maac" #"gathering_centIAC" #"gathering_social_v1"#gathering_1" file_name = "save_weight/" + model_name ifload = False save_eps = 30 ifsave_model = True agentParam = { "gamma": args.gamma, "LR": 1e-2, "device": device, "ifload": ifload, "filename": file_name
type=int, default=543, metavar='N', help='random seed (default: 543)') parser.add_argument('--render', default=True, action='store_true', help='render the environment') parser.add_argument('--log-interval', type=int, default=2, metavar='N', help='interval between training status logs (default: 10)') args = parser.parse_args() env = GatheringEnv(2) # gym.make('CartPole-v1') env.seed(args.seed) torch.manual_seed(args.seed) agentParam = {"gamma": args.gamma, "LR": 1e-2, "device": device} # agentParam = model_name = "pg_social" file_name = "/Users/xue/Desktop/Social Law/saved_weight/" + model_name save_eps = 10 ifsave_model = True # logger = Logger('./logs5') class Agents(): def __init__(self, agents):