def seq_primes(a, b): n = 0 prime = True while prime: prime = is_prime(f(a,b,n)) n += 1 return n-1
from gauss import is_prime from gauss import perms sup = 0 digs = '987654321' while 1: for perm in perms(digs): if is_prime(int(perm)): if int(perm) > sup: sup = int(perm) digs = digs.replace(digs[0], '') if sup: print sup; break
from gauss import is_prime from gauss import primes def is_square(n): return int(n**.5) == n**.5 n = 33 brk = 0 while 1: if not is_prime(n): conj = 0 for prime in primes(2, n): if is_square((n - prime)/2): conj = 1 if not conj: print n break n += 2
def gen_primes(n): return [x for x in xrange(n) if is_prime(x)]
from gauss import is_prime l = [] def trunl(n): res = [] strn = str(n) for i in xrange(1, len(strn)): res.append(int(strn[:i])) return res def trunr(n): res = [] strn = str(n) for i in xrange(1, len(strn)): res.append(int(strn[-i:])) return res for prime in primes(8, 10000000): if [1 for i in trunl(prime) if is_prime(i)] == [1]*(len(str(prime))-1): if [1 for i in trunr(prime) if is_prime(i)] == [1]*(len(str(prime))-1): l.append(prime) else: continue else: continue if len(l) == 11: print sum(l) break