Example #1
0
 def setUp(self):
     f = lambda x: np.sin(2 * np.pi * 10. * x) + np.sin(2 * np.pi * 13. * x)
     Ts = 1 / 150.0
     self.x = np.atleast_2d(np.arange(0, 1, Ts)).T
     self.xt = np.atleast_2d(np.arange(0, 2, Ts)).T
     self.y = np.atleast_2d(f(self.x).ravel()).T
     self.yt = np.atleast_2d(f(self.xt).ravel()).T
     self.hyps = {
         'mean':
         np.array([]),
         'lik': [np.log(0.5)],
         'cov':
         np.log([
             2.54846959e-01, 5.24927544e-01, 2.15436686e-01, 2.86117061e-01,
             1.81531436e-01, 1.44032999e-01, 1.29493734e+01, 9.92190150e+00,
             1.85152636e+02, 7.49453588e+01, 1.81532400e+00, 2.28497943e+01,
             1.03092807e-01, 4.88398945e-02, 1.94985263e+01, 3.19829864e+01,
             2.12244665e+00, 8.39227875e-01
         ])
     }
     self.hypGP = gp.GaussianProcess(hyp=self.hyps,
                                     inf=gp.inferences.exact,
                                     mean=gp.means.zero,
                                     cov=gp.kernels.spectral_mixture,
                                     lik=gp.likelihoods.gaussian,
                                     xtrain=self.x,
                                     ytrain=self.y,
                                     xtest=self.xt,
                                     ytest=self.yt)
Example #2
0
l1Optimizer = 'COBYLA'
l1Options = {'maxiter': 100}
l2Optimizer = 'L-BFGS-B'
l2Options = {'maxiter': 1000}

# Noise std. deviation
sn = 1.0

# Initialize hyperparams
initArgs = {'Q': Q, 'x': x, 'y': y, 'samplingFreq': 1, 'nPeaks': Q, 'sn': sn}
hypGuess = gp.core.initSMParamsFourier(**initArgs)
# Initialize GP object
hypGP = gp.GaussianProcess(hyp=hypGuess,
                           inf=infFunc,
                           mean=meanFunc,
                           cov=covFunc,
                           lik=likFunc,
                           xtrain=x,
                           ytrain=y,
                           xtest=xt)
# Random starts
for itr in range(nItr):
    # Start over
    hypGuess = gp.core.initSMParamsFourier(**initArgs)
    hypGP.hyp = hypGuess
    # Optimize the guessed hyperparams
    try:
        hypGP.train(l1Optimizer, l1Options)
    except Exception as e:
        print "Iteration: ", itr, "FAILED"
        print "\t", e
        continue
Example #3
0
import torch
import numpy as np
import kernel as k
import gaussian_process as gp
import bayes_opt as bo

def ackley(x):
    exp1 = -0.2*(0.5*x.pow(2)).sum().pow(0.5)
    exp2 = 0.5*torch.cos(2*np.pi*x).sum()
    y = np.e + 20 - 20*torch.exp(exp1) - torch.exp(exp2)
    return y

n_dimensions = 2
bounds = torch.tensor([[-10.0, 10.0]]).expand(n_dimensions, 2)
iters = 50
kernel = k.Matern32Kernel(1.0, 1.0)
model = gp.GaussianProcess(kernel, 0.001)
acq_func = bo.Acquisition(1.0)
optimiser = bo.BayesOptimiser(model, acq_func)
x_min, y_min, x_hist, y_hist = optimiser.minimise(ackley, bounds, iters,
                                                  iter_loops=10)
Example #4
0
        mu_grad = gp.mu_grad(x)
        sigma_grad = gp.sigma_grad(x)
        grad = mu_grad - self.beta * sigma_grad
        return grad


def ackley(x):
    x = torch.from_numpy(x)
    x = x.view(-1, 1)
    exp1 = -0.2 * (0.5 * x.pow(2).sum(1)).pow(0.5)
    exp2 = 0.5 * torch.cos(2 * np.pi * x).sum(1)
    y = np.e + 20 - 20 * torch.exp(exp1) - torch.exp(exp2)
    return y.data.numpy()


bounds = torch.tensor([[-8.0, 8.0]]).expand(1, 2)
iters = 20
kernel = krn.Matern32Kernel(1.0, 1.0, 'cpu') * \
krn.Matern52Kernel(1.0, 1.0, 'cpu')
gp = gaussp.GaussianProcess(kernel, alpha=0.0001)
acq_func = Acquisition(1.0)
optimiser = BayesOptimiser(gp, acq_func)
x_min, y_min, xp, yp = optimiser.minimise(ackley, bounds, iters)

filenames = glob.glob('ackley_frame*.png')
filenames = sorted(filenames)

gif_images = []
for filename in filenames:
    gif_images.append(imageio.imread(filename))
imageio.mimsave('ackley.gif', gif_images, duration=1 / 2)