Example #1
0
def load_hcp_tcgn(device):

    time_series, labels, As = load_hcp_example()

    normalized_laplacian = True
    coarsening_levels = 4

    graphs, perm = coarsening.coarsen(As[0],
                                      levels=coarsening_levels,
                                      self_connections=False)
    L = [
        torch.tensor(graph.rescale_L(graph.laplacian(
            A, normalized=normalized_laplacian).todense(),
                                     lmax=2),
                     dtype=torch.float).to(device) for A in graphs
    ]

    L_sparse = list()
    for A in graphs:
        g = graph.rescale_L(graph.laplacian(A,
                                            normalized=normalized_laplacian),
                            lmax=2)
        coo = coo_matrix(g)
        values = coo.data
        indices = np.vstack((coo.row, coo.col))
        i = torch.LongTensor(indices)
        v = torch.FloatTensor(values)
        shape = coo.shape
        a = torch.sparse.FloatTensor(i, v, torch.Size(shape))
        a = a.to(device)
        L_sparse.append(a)

    # idx_train = range(17*512)
    idx_train = range(int(0.8 * time_series.shape[0]))
    print('Size of train set: {}'.format(len(idx_train)))

    idx_test = range(len(idx_train), time_series.shape[0])
    print('Size of test set: {}'.format(len(idx_test)))
    # idx_train = range(5*512)
    # idx_test = range(len(idx_train), 10*512)

    train_data = time_series[idx_train]
    train_labels = labels[idx_train]
    test_data = time_series[idx_test]
    test_labels = labels[idx_test]

    train_data = perm_data_time(train_data, perm)
    test_data = perm_data_time(test_data, perm)

    sparse = False
    if sparse:
        laplacian = L_sparse
    else:
        laplacian = L
    return laplacian, train_data, test_data, train_labels, test_labels
Example #2
0
def load_hcp_tcgn():

    time_series, labels, As = load_hcp_example()

    normalized_laplacian = True
    coarsening_levels = 4

    graphs, perm = coarsening.coarsen(As[0],
                                      levels=coarsening_levels,
                                      self_connections=False)
    L = [graph.laplacian(A, normalized=normalized_laplacian) for A in graphs]

    # idx_train = range(40*512)
    # idx_test = range(len(idx_train), time_series.shape[0])
    idx_train = range(5 * 512)
    idx_test = range(len(idx_train), 10 * 512)

    train_data = time_series[idx_train]
    train_labels = labels[idx_train]
    test_data = time_series[idx_test]
    test_labels = labels[idx_test]

    train_data = perm_data_time(train_data, perm)
    test_data = perm_data_time(test_data, perm)

    return L, train_data, test_data, train_labels, test_labels
Example #3
0
def create_graph():
    def grid_graph(m, corners=False):
        z = graph.grid(m)
        dist, idx = graph.distance_sklearn_metrics(z,
                                                   k=number_edges,
                                                   metric=metric)
        A = graph.adjacency(dist, idx)

        if corners:
            import scipy.sparse
            A = A.toarray()
            A[A < A.max() / 1.5] = 0
            A = scipy.sparse.csr_matrix(A)
            print('{} edges'.format(A.nnz))

        print("{} > {} edges".format(A.nnz // 2, number_edges * m**2 // 2))
        return A

    number_edges = 12
    metric = 'euclidean'
    normalized_laplacian = True
    coarsening_levels = 4

    A = grid_graph(28, corners=False)
    graphs, perm = coarsening.coarsen(A,
                                      levels=coarsening_levels,
                                      self_connections=False)
    L = [graph.laplacian(A, normalized=normalized_laplacian) for A in graphs]
    del A

    return L, perm
Example #4
0
def create_graph():

    def grid_graph(m, corners=False):
        z = graph.grid(m)
        dist, idx = graph.distance_sklearn_metrics(z, k=number_edges, metric=metric)
        A = graph.adjacency(dist, idx)

        # Connections are only vertical or horizontal on the grid.
        # Corner vertices are connected to 2 neightbors only.
        if corners:
            import scipy.sparse
            A = A.toarray()
            A[A < A.max() / 1.5] = 0
            A = scipy.sparse.csr_matrix(A)
            print('{} edges'.format(A.nnz))

        print("{} > {} edges".format(A.nnz // 2, number_edges * m ** 2 // 2))
        return A


    number_edges= 12
    metric = 'euclidean'
    normalized_laplacian = True
    coarsening_levels = 4

    A = grid_graph(28, corners=False)
    # A = graph.replace_random_edges(A, 0)
    graphs, perm = coarsening.coarsen(A, levels=coarsening_levels, self_connections=False)
    L = [graph.laplacian(A, normalized=normalized_laplacian) for A in graphs]
    # graph.plot_spectrum(L)
    del A

    return L, perm
Example #5
0
def init_GCN_params():

    A = scipy.sparse.csr_matrix(create_sq_mesh(28, 28))
    L = graph.laplacian(A)
    _, U = graph.fourier(L)

    hyper = dict()
    hyper['NFEATURES'] = 28**2
    hyper['NCLASSES'] = 10
    hyper['F'] = 15
    hyper['U'] = U
    hyper['L'] = L

    params = dict()
    params['W1'] = 0.1*np.random.randn(hyper['NFEATURES'], hyper['F'], 1)
    params['b1'] = 0.001*np.random.randn(1, hyper['F'], 1)
    params['W2'] = 0.1*np.random.randn(hyper['F']*hyper['NFEATURES'], hyper['NCLASSES'])
    params['b2'] = 0.001*np.random.randn(hyper['NCLASSES'])

    return params, hyper
Example #6
0
def create_graph(device):
    def grid_graph(m, corners=False):
        z = graph.grid(m)
        dist, idx = graph.distance_sklearn_metrics(z,
                                                   k=number_edges,
                                                   metric=metric)
        A = graph.adjacency(dist, idx)
        #A = sp.random(A.shape[0], A.shape[0], density=0.01, format="csr", data_rvs=lambda s: np.random.uniform(0, 0.5, size=s))
        # Connections are only vertical or horizontal on the grid.
        # Corner vertices are connected to 2 neightbors only.
        if corners:
            import scipy.sparse
            A = A.toarray()
            A[A < A.max() / 1.5] = 0
            A = scipy.sparse.csr_matrix(A)
            print('{} edges'.format(A.nnz))

        print("{} > {} edges".format(A.nnz // 2, number_edges * m**2 // 2))
        return A

    number_edges = 8
    metric = 'euclidean'
    normalized_laplacian = True
    coarsening_levels = 4

    A = grid_graph(28, corners=False)
    A = graph.replace_random_edges(A, 0)
    graphs, perm = coarsening.coarsen(A,
                                      levels=coarsening_levels,
                                      self_connections=False)
    L = [
        torch.tensor(graph.rescale_L(graph.laplacian(
            A, normalized=normalized_laplacian).todense(),
                                     lmax=2),
                     dtype=torch.float).to(device) for A in graphs
    ]
    # graph.plot_spectrum(L)
    del A

    return L, perm