def test_geopandas_import_pass(self): """Test ability to import geopandas and create spatial object""" import geopandas as gpd # exp = "geopandas is not installed. gdeltPyR needs geopandas to export as shapefile. Visit http://geopandas.org/install.html for instructions." gdf = _geofilter(test_df) return self.assertTrue(isinstance(gdf, gpd.geodataframe.GeoDataFrame))
def test_geopandas_import_fail(self): """Test ability to import geopandas""" import sys sys.modules['geopandas'] = None exp = "geopandas is not installed. gdeltPyR needs geopandas to export as shapefile. Visit http://geopandas.org/install.html for instructions." with self.assertRaises(Exception) as context: gdf = _geofilter(test_df) the_exception = context.exception return self.assertTrue(exp, str(the_exception))
def test_gdelt_geofilter_events2(self): """Test ability to turn df into geodataframe""" # load df spam = pd.read_pickle(os.path.join(gdelt.base.BASE_DIR, "data", "events2samp.gz"), compression="gzip").drop('CAMEOCodeDescription', axis=1) try: import geopandas as gpd geo = _geofilter(spam) return self.assertIsInstance(geo, gpd.GeoDataFrame) except: warnings.warn('Geopandas is not installed. ' 'Unable to test _geofilter') exp = "Blank" return self.assertEqual("Blank", exp)
def Search(self, date, table='events', coverage=False, translation=False, output=None, queryTime=datetime.datetime.now().strftime('%m-%d-%Y %H:%M:%S'), normcols=False): """Core searcher method to set parameters for GDELT data searches Keyword arguments ---------- date : str, required The string representation of a datetime (single) or date range (list of strings) that is (are) the targeted timelines to pull GDELT data. table : string,{'events','gkg','mentions'} Select from the table formats offered by the GDELT service: * events (1.0 and 2.0) The biggest difference between 1.0 and 2.0 are the update frequencies. 1.0 data is disseminated daily, and the most recent data will be published at 6AM Eastern Standard time of the next day. So, 21 August 2016 results would be available 22 August 2016 at 6AM EST. 2.0 data updates every 15 minutes of the current day. Version 1.0 runs from January 1, 1979 through March 31, 2013 contains 57 fields for each record. The Daily Updates collection, which begins April 1, 2013 and runs through present, contains an additional field at the end of each record, for a total of 58 fields for each record. The format is dyadic CAMEO format, capturing two actors and the action performed by Actor1 upon Actor2. Version 2.0 only covers February 19, 2015 onwards, and is stored in an expanded version of the dyadic CAMEO format . See http://data.gdeltproject.org/documentation/GDELT-Event_ Codebook-V2.0.pdf for more information. * gkg (1.0 and 2.0) **Warning** These tables and queries can be extremely large and consume a lot of RAM. Consider running a single days worth of gkg pulls, store to disc, flush RAM, then proceed to the next day. Table that represents all of the latent dimensions, geography, and network structure of the global news. It applies an array of highly sophisticated natural language processing algorithms to each document to compute a range of codified metadata encoding key latent and contextual dimensions of the document. Version 2.0 includes Global Content Analysis Measures (GCAM) which reportedly provides 24 emotional measurement packages that assess more than 2,300 emotions and themes from every article in realtime, multilingual dimensions natively assessing the emotions of 15 languages (Arabic, Basque, Catalan, Chinese, French, Galician, German, Hindi, Indonesian, Korean, Pashto, Portuguese, Russian, Spanish, and Urdu).See documentation about GKG 1.0 at http://data.gdeltproject.org/documentation/GDELT- Global_Knowledge_Graph_Codebook.pdf, and GKG 2.0 at http:// data.gdeltproject.org/documentation/GDELT-Global_Knowledge_ Graph_Codebook-V2.1.pdf. * mentions (2.0 only) Mentions table records every mention of an event over time, along with the timestamp the article was published. This allows the progression of an event through the global media to be tracked, identifying outlets that tend to break certain kinds of events the earliest or which may break stories later but are more accurate in their reporting on those events. Combined with the 15 minute update resolution and GCAM, this also allows the emotional reaction and resonance of an event to be assessed as it sweeps through the world’s media. coverage : bool, default: False When set to 'True' and the GDELT version parameter is set to 2, gdeltPyR will pull back every 15 minute interval in the day ( full results) or, if pulling for the current day, pull all 15 minute intervals up to the most recent 15 minute interval of the current our. For example, if the current date is 22 August, 2016 and the current time is 0828 HRs Eastern, our pull would get pull every 15 minute interval in the day up to 0815HRs. When coverate is set to true and a date range is entered, we pull every 15 minute interval for historical days and up to the most recent 15 minute interval for the current day, if that day is included. translation : bool, default: False Whether or not to pull the translation database available from version 2 of GDELT. If translation is True, the translated set is downloaded, if set to False the english set is downloaded. queryTime : datetime object, system generated This records the system time when gdeltPyR's query was executed, which can be used for logging purposes. output : string, {None,'df','gpd','shp','shapefile', 'json', 'geojson' 'r','geodataframe'} Select the output format for the returned GDELT data Options ------- json - Javascript Object Notation output; returns list of dictionaries in Python or a list of json objects r - writes the cross language dataframe to the current directory. This uses the Feather library found at https://github.com/wesm/ feather. This option returns a pandas dataframe but write the R dataframe to the current working directory. The filename includes all the parameters used to launch the query: version, coverage, table name, query dates, and query time. csv- Outputs a CSV format; all dates and columns are joined shp- Writes an ESRI shapefile to current directory or path; output is filtered to exclude rows with no latitude or longitude geojson- geodataframe- Returns a geodataframe; output is filtered to exclude rows with no latitude or longitude. This output can be manipulated for geoprocessing/geospatial operations such as reprojecting the coordinates, creating a thematic map (choropleth map), merging with other geospatial objects, etc. See http://geopandas.org/ for info. normcols : bool Applies a generic lambda function to normalize GDELT columns for compatibility with SQL or Shapefile outputs. Examples -------- >>> from gdelt >>> gd = gdelt.gdelt(version=1) >>> results = gd.Search(['2016 10 19'],table='events',coverage=True) >>> print(len(results)) 244767 >>> gd = gdelt.gdelt(version=2) >>> results = gd.Search(['2016 Oct 10'], table='gkg') >>> print(len(results)) 2398 >>> print(results.V2Persons.ix[2]) Juanita Broaddrick,1202;Monica Lewinsky,1612;Donald Trump,12;Donald Trump,244;Wolf Blitzer,1728;Lucianne Goldberg,3712;Linda Tripp,3692; Bill Clinton,47;Bill Clinton,382;Bill Clinton,563;Bill Clinton,657;Bill Clinton,730;Bill Clinton,1280;Bill Clinton,2896;Bill Clinton,3259;Bill Clinton,4142;Bill Clinton,4176;Bill Clinton,4342;Ken Starr,2352;Ken Starr,2621;Howard Stern,626;Howard Stern,4286;Robin Quivers,4622; Paula Jones,3187;Paula Jones,3808;Gennifer Flowers,1594;Neil Cavuto, 3362;Alicia Machado,1700;Hillary Clinton,294;Hillary Clinton,538; Hillary Clinton,808;Hillary Clinton,1802;Hillary Clinton,2303;Hillary Clinton,4226 >>> results = gd.Search(['2016 Oct 10'], table='gkg',output='r') Notes ------ Read more about GDELT data at http://gdeltproject.org/data.html gdeltPyR retrieves Global Database of Events, Language, and Tone (GDELT) data (version 1.0 or version 2.0) via parallel HTTP GET requests and is an alternative to accessing GDELT data via Google BigQuery. Performance will vary based on the number of available cores (i.e. CPUs), internet connection speed, and available RAM. For systems with limited RAM, Later iterations of gdeltPyR will include an option to store the output directly to disc. """ # check for valid table names; fail early valid = ['events', 'gkg', 'vgkg', 'iatv', 'mentions'] if table not in valid: raise ValueError( 'You entered "{}"; this is not a valid table name.' ' Choose from "events", "mentions", or "gkg".'.format(table)) _date_input_check(date, self.version) self.coverage = coverage self.date = date version = self.version baseUrl = self.baseUrl self.queryTime = queryTime self.table = table self.translation = translation self.datesString = _gdeltRangeString(_dateRanger(self.date), version=version, coverage=self.coverage) ################################# # R dataframe check; fail early ################################# if output == 'r': # pragma: no cover try: import feather except ImportError: raise ImportError(('You need to install `feather` in order ' 'to output data as an R dataframe. Keep ' 'in mind the function will return a ' 'pandas dataframe but write the R ' 'dataframe to your current working ' 'directory as a `.feather` file. Install ' 'by running\npip install feather\nor if ' 'you have Anaconda (preferred)\nconda ' 'install feather-format -c conda-forge\nTo ' 'learn more about the library visit https:/' '/github.com/wesm/feather')) ################################## # Partial Functions ################################# v1RangerCoverage = partial(_gdeltRangeString, version=1, coverage=True) v2RangerCoverage = partial(_gdeltRangeString, version=2, coverage=True) v1RangerNoCoverage = partial(_gdeltRangeString, version=1, coverage=False) v2RangerNoCoverage = partial(_gdeltRangeString, version=2, coverage=False) urlsv1gkg = partial(_urlBuilder, version=1, table='gkg') urlsv2mentions = partial(_urlBuilder, version=2, table='mentions', translation=self.translation) urlsv2events = partial(_urlBuilder, version=2, table='events', translation=self.translation) urlsv1events = partial(_urlBuilder, version=1, table='events') urlsv2gkg = partial(_urlBuilder, version=2, table='gkg', translation=self.translation) eventWork = partial(_mp_worker, table='events', proxies=self.proxies) codeCams = partial(_cameos, codes=codes) ##################################### # GDELT Version 2.0 Headers ##################################### if int(self.version) == 2: ################################### # Download 2.0 Headers ################################### if self.table == 'events': try: self.events_columns = \ pd.read_csv(os.path.join(BASE_DIR, "data", 'events2.csv'))[ 'name'].values.tolist() except: # pragma: no cover self.events_columns = _events2Heads() elif self.table == 'mentions': try: self.mentions_columns = \ pd.read_csv( os.path.join(BASE_DIR, "data", 'mentions.csv'))[ 'name'].values.tolist() except: # pragma: no cover self.mentions_columns = _mentionsHeads() else: try: self.gkg_columns = \ pd.read_csv( os.path.join(BASE_DIR, "data", 'gkg2.csv'))[ 'name'].values.tolist() except: # pragma: no cover self.gkg_columns = _gkgHeads() ##################################### # GDELT Version 1.0 Analytics, Header, Downloads ##################################### if int(self.version) == 1: if self.table is "mentions": raise ValueError('GDELT 1.0 does not have the "mentions"' ' table. Specify the "events" or "gkg"' 'table.') if self.translation: raise ValueError('GDELT 1.0 does not have an option to' ' return translated table data. Switch to ' 'version 2 by reinstantiating the gdelt ' 'object with <gd = gdelt.gdelt(version=2)>') else: pass try: self.events_columns = \ pd.read_csv(os.path.join(BASE_DIR, "data", 'events1.csv'))[ 'name'].values.tolist() except: # pragma: no cover self.events_columns = _events1Heads() columns = self.events_columns if self.table == 'gkg': self.download_list = (urlsv1gkg( v1RangerCoverage(_dateRanger(self.date)))) elif self.table == 'events' or self.table == '': if self.coverage is True: # pragma: no cover self.download_list = (urlsv1events( v1RangerCoverage(_dateRanger(self.date)))) else: # print("I'm here at line 125") self.download_list = (urlsv1events( v1RangerNoCoverage(_dateRanger(self.date)))) else: # pragma: no cover raise Exception('You entered an incorrect table type for ' 'GDELT 1.0.') ##################################### # GDELT Version 2.0 Analytics and Download ##################################### elif self.version == 2: if self.table == 'events' or self.table == '': columns = self.events_columns if self.coverage is True: # pragma: no cover self.download_list = (urlsv2events( v2RangerCoverage(_dateRanger(self.date)))) else: self.download_list = (urlsv2events( v2RangerNoCoverage(_dateRanger(self.date)))) if self.table == 'gkg': columns = self.gkg_columns if self.coverage is True: # pragma: no cover self.download_list = (urlsv2gkg( v2RangerCoverage(_dateRanger(self.date)))) else: self.download_list = (urlsv2gkg( v2RangerNoCoverage(_dateRanger(self.date)))) # print ("2 gkg", urlsv2gkg(self.datesString)) if self.table == 'mentions': columns = self.mentions_columns if self.coverage is True: # pragma: no cover self.download_list = (urlsv2mentions( v2RangerCoverage(_dateRanger(self.date)))) else: self.download_list = (urlsv2mentions( v2RangerNoCoverage(_dateRanger(self.date)))) ######################### # DEBUG Print Section ######################### # if isinstance(self.datesString,str): # if parse(self.datesString) < datetime.datetime.now(): # self.datesString = (self.datesString[:8]+"234500") # elif isinstance(self.datesString,list): # print("it's a list") # elif isinstance(self.datesString,np.ndarray): # print("it's an array") # else: # print("don't know what it is") # print (self.version,self.download_list,self.date, self.table, self.coverage, self.datesString) # # print (self.download_list) # if self.coverage: # coverage = 'True' # else: # coverage = 'False' # if isinstance(self.date, list): # # formattedDates = ["".join(re.split(' |-|;|:', l)) for l in # self.date] # path = formattedDates # print("gdeltVersion_" + str(self.version) + # "_coverage_" + coverage + "_" + # "_table_" + self.table + '_queryDates_' + # "_".join(path) + # "_queryTime_" + # datetime.datetime.now().strftime('%m-%d-%YT%H%M%S')) # else: # print("gdeltVersion_" + str(self.version) + # "_coverage_" + coverage + "_" + # "_table_" + self.table + '_queryDates_' + # "".join(re.split(' |-|;|:', self.date)) + # "_queryTime_" + # datetime.datetime.now().strftime('%m-%d-%YT%H%M%S')) ######################### # Download section ######################### # print(self.download_list,type(self.download_list)) # from gdelt.extractors import normalpull # e=ProcessPoolExecutor() # if isinstance(self.download_list,list) and len(self.download_list)==1: # from gdelt.extractors import normalpull # # results=normalpull(self.download_list[0],table=self.table) # elif isinstance(self.download_list,list): # print(table) # multilist = list(e.map(normalpull,self.download_list)) # results = pd.concat(multilist) # print(results.head()) if isinstance(self.datesString, str): if self.table == 'events': results = eventWork(self.download_list) else: # if self.table =='gkg': # results = eventWork(self.download_list) # # else: results = _mp_worker(self.download_list, proxies=self.proxies) else: if self.table == 'events': pool = Pool(processes=cpu_count()) downloaded_dfs = list( pool.imap_unordered(eventWork, self.download_list)) else: pool = NoDaemonProcessPool(processes=cpu_count()) downloaded_dfs = list( pool.imap_unordered( _mp_worker, self.download_list, )) pool.close() pool.terminate() pool.join() # print(downloaded_dfs) results = pd.concat(downloaded_dfs) del downloaded_dfs results.reset_index(drop=True, inplace=True) if self.table == 'gkg' and self.version == 1: results.columns = results.ix[0].values.tolist() results.drop([0], inplace=True) columns = results.columns # check for empty dataframe if results is not None: if len(results.columns) == 57: # pragma: no cover results.columns = columns[:-1] else: results.columns = columns # if dataframe is empty, raise error elif results is None or len(results) == 0: # pragma: no cover raise ValueError("This GDELT query returned no data. Check " "query parameters and " "retry") # Add column of human readable codes; need updated CAMEO if self.table == 'events': cameoDescripts = results.EventCode.apply(codeCams) results.insert(27, 'CAMEOCodeDescription', value=cameoDescripts.values) ############################################### # Setting the output options ############################################### # dataframe output if output == 'df': self.final = results # json output elif output == 'json': self.final = results.to_json(orient='records') # csv output elif output == 'csv': self.final = results.to_csv(encoding='utf-8') # geopandas dataframe output elif output == 'gpd' or output == 'geodataframe' or output == 'geoframe': self.final = _geofilter(results) self.final = self.final[self.final.geometry.notnull()] # r dataframe output elif output == 'r': # pragma: no cover if self.coverage: coverage = 'True' else: coverage = 'False' if isinstance(self.date, list): formattedDates = [ "".join(re.split(' |-|;|:', l)) for l in self.date ] path = formattedDates outPath = ( "gdeltVersion_" + str(self.version) + "_coverage_" + coverage + "_" + "_table_" + self.table + '_queryDates_' + "_".join(path) + "_queryTime_" + datetime.datetime.now().strftime('%m-%d-%YT%H%M%S') + ".feather") else: outPath = ( "gdeltVersion_" + str(self.version) + "_coverage_" + coverage + "_" + "_table_" + self.table + '_queryDates_' + "".join(re.split(' |-|;|:', self.date)) + "_queryTime_" + datetime.datetime.now().strftime('%m-%d-%YT%H%M%S') + ".feather") if normcols: results.columns = list( map(lambda x: (x.replace('_', "")).lower(), results.columns)) feather.api.write_dataframe(results, outPath) return results else: self.final = results ######################### # Return the result ######################### # normalized columns if normcols: self.final.columns = list( map(lambda x: (x.replace('_', "")).lower(), self.final.columns)) return self.final
def test_geopandas_import_pass_normcol(self): import geopandas as gpd test_df.columns = list( map(lambda x: (x.replace('_', "")).lower(), test_df.columns)) gdf = _geofilter(test_df) return self.assertTrue(isinstance(gdf, gpd.geodataframe.GeoDataFrame))