Example #1
0
    def test_set_series(self, test_read_surface_points):
        series = gp.Series()
        # We can pass a pandas categories_df
        series.set_series_categories(pn.DataFrame({"fault": ['test2'],
                                        "Rest": 'SecondaryReservoir'}))

        # We can even pass an interface object since sometimes (GeoModeller) we
        # can import the surface in the same table
        series.set_series_categories(test_read_surface_points)
        print(series)

        # Test init series
        series = gp.Series(series_distribution={"fault": 'MainFault',
                                                "Rest": ('SecondaryReservoir', 'Seal3', 'Reservoir', 'Overlying'),
                                                })
        return series
Example #2
0
def test_read_surface_points():
    surface_points = gp.SurfacePoints()
    surface_points.read_surface_points(os.pardir + "/input_data/FabLessPoints_Points.csv", inplace=True)

    # Test setting series
    series = gp.Series(series_distribution={"fault": 'MainFault',
                                            "Rest": ('SecondaryReservoir', 'Seal3', 'Reservoir', 'Overlying'),
                                            })
    surface_points.map_data_from_series(series, 'id')
    return surface_points
def create_series(create_faults):
    faults = create_faults

    series = gp.Series(faults)
    series.set_series_index(['foo', 'foo2', 'foo5', 'foo7'])
    series.add_series('foo3')
    series.delete_series('foo2')
    series.rename_series({'foo': 'boo'})
    series.reorder_series(['foo3', 'boo', 'foo7', 'foo5'])

    faults.set_is_fault(['boo'])

    fr = np.zeros((4, 4))
    fr[2, 2] = True
    faults.set_fault_relation(fr)

    series.add_series('foo20')

    return series
Example #4
0
# %%
# Series
# ~~~~~~
#
# Series is the object that contains the properties associated with each
# independent scalar field. Right now it is simply the order of the series
# (which is inferred by the index order). But in the future will be add the
# unconformity relation or perhaps the type of interpolator
#
# Series and Faults classes are quite entangled since fault are a view of
# series
#

# %%
faults = gp.Faults()
series = gp.Series(faults)
series.df

# %%
# We can modify the series bt using ``set_series_index``:
#

# %%
series.set_series_index(['foo', 'foo2', 'foo5', 'foo7'])
series

# %%
# The index of series are pandas categories. These provides quite handy
# backend functionality (see pandas.Categorical).
#
Example #5
0
def loop2gempy_(test_data_name, tmp_path, vtk_path, orientations_file, contacts_file, groups_file, dtm_reproj_file,
                bbox, model_base, model_top, vtk):
    import gempy as gp
    from gempy import plot
    geo_model = gp.create_model(test_data_name)

    # If depth coordinates are much smaller than XY the whole system of equations becomes very unstable. Until
    # I fix it properly in gempy this is a handcrafted hack
    ve = (bbox[0] - bbox[2]) / (model_base - model_top)

    if ve < 3:
        ve = 0
    else:
        print('The vertical exageration is: ', ve)

    gp.init_data(geo_model, extent=[bbox[0], bbox[2], bbox[1], bbox[3], model_base*ve, model_top*ve],
        resolution = (50,50,50),
          path_o = orientations_file,
          path_i = contacts_file, default_values=True);

    # Show example lithological points
    #gp.get_data(geo_model, 'surface_points').head()

    # Show example orientations
    #gp.get_data(geo_model, 'orientations').head()

    # Plot some of this data
    #gp.plot.plot_data(geo_model, direction='z')

    geo_model.modify_surface_points(geo_model.surface_points.df.index, Z=geo_model.surface_points.df['Z']*ve)

    # Load reprojected topgraphy to model

    fp = dtm_reproj_file
    geo_model.set_topography(source='gdal',filepath=fp)

    contents=np.genfromtxt(groups_file,delimiter=',',dtype='U100')
    ngroups=len(contents)

    faults = gp.Faults()
    series = gp.Series(faults)
    #series.df

    #display(ngroups,contents)
    groups = []

    for i in range (0,ngroups):
        groups.append(contents[i].replace("\n",""))
        series.add_series(contents[i].replace("\n",""))
        print(contents[i].replace("\n",""))

    series.delete_series('Default series')

    #series

    # Load surfaces and assign to series
    surfaces = gp.Surfaces(series)

    print(ngroups,groups)
    for i in range(0,ngroups):
        contents=np.genfromtxt(tmp_path+groups[i]+'.csv',delimiter=',',dtype='U100')
        nformations=len(contents.shape)

        if(nformations==1):
            for j in range (1,len(contents)):
                surfaces.add_surface(str(contents[j]).replace("\n",""))
                d={groups[i]:str(contents[j]).replace("\n","")}
                surfaces.map_series({groups[i]:(str(contents[j]).replace("\n",""))}) #working but no gps
        else:
            for j in range (1,len(contents[0])):
                surfaces.add_surface(str(contents[0][j]).replace("\n",""))
                d={groups[i]:str(contents[0][j]).replace("\n","")}
                surfaces.map_series({groups[i]:(str(contents[0][j]).replace("\n",""))}) #working but no gps

    # Set Interpolation Data
    id_only_one_bool = geo_model.surface_points.df['id'].value_counts() == 1
    id_only_one = id_only_one_bool.index[id_only_one_bool]
    single_vals = geo_model.surface_points.df[geo_model.surface_points.df['id'].isin(id_only_one)]
    for idx, vals in single_vals.iterrows():
        geo_model.add_surface_points(vals['X'], vals['Y'], vals['Z'], vals['surface'])

    geo_model.update_structure()

    gp.set_interpolation_data(geo_model,
                              compile_theano=True,
                              theano_optimizer='fast_compile',
                              verbose=[])

    # Provide summary data on model

    #geo_model.additional_data.structure_data

    #Calculate Model
    gp.compute_model(geo_model)

    # Extract surfaces to visualize in 3D renderers
    #gp.plot.plot_section(geo_model, 49, direction='z', show_data=False)

    ver, sim = gp.get_surfaces(geo_model)

    # import winsound
    # duration = 700  # milliseconds
    # freq = 1100  # Hz
    # winsound.Beep(freq, duration)
    # winsound.Beep(freq, duration)
    # winsound.Beep(freq, duration)

    #Visualise Model
    gp.plot.plot_3D(geo_model, render_data=False)

    #Save model as vtk
    if(vtk):
        gp.plot.export_to_vtk(geo_model, path=vtk_path, name=test_data_name+'.vtk', voxels=False, block=None, surfaces=True)

    return geo_model