def main(_): FLAGS.batch_size = 1 pic_set = [ "F:/TensorFlowDev/PythonWorksp/TensorFlow/furniture/bed/baby-bed/baby-bed356.jpg", "F:/TensorFlowDev/PythonWorksp/TensorFlow/furniture/bed/hammock/hammock1476.jpg", "F:/TensorFlowDev/PythonWorksp/TensorFlow/RetrainInception/flower_photos/tulips/3150964108_24dbec4b23_m.jpg", "F:/TensorFlowDev/PythonWorksp/TensorFlow/RetrainInception/flower_photos/tulips/3105702091_f02ce75226.jpg", "F:/TensorFlowDev/www/upload-files/6454_14991605780.jpg", "F:/TensorFlowDev/www/upload-files/4589_14991507381.jpg", "F:/TensorFlowDev/www/upload-files/7255_14991507381.jpg", "F:/TensorFlowDev/PythonWorksp/TensorFlow/furniture/bed/bunk-bed/bunk-bed576.jpg", "F:/TensorFlowDev/www/upload-files/1501723500_05517.jpg", "F:/TensorFlowDev/www/upload-files/1501723499_19721-n.jpg" ] with tf.name_scope('input'): # img_path = pic_set[9] filename_queue = tf.train.string_input_producer([img_path]) # reader = tf.WholeFileReader() key, value = reader.read(filename_queue) orig_img = tf.image.decode_jpeg(value) print('here1') resized_img = tf.image.resize_images(orig_img, [IMAGE_SIZE, IMAGE_SIZE]) resized_img.set_shape((IMAGE_SIZE, IMAGE_SIZE, 3)) float_img = tf.image.per_image_standardization(resized_img) image = tf.expand_dims(float_img, 0) print('here2') tf.summary.image('input-image', image) #logits = general.inference(image) action = general.inference(image) # Restore the moving average version of the learned variables for eval. variable_averages = tf.train.ExponentialMovingAverage( general.MOVING_AVERAGE_DECAY) variables_to_restore = variable_averages.variables_to_restore( ) #moving_avg_variables=tf.moving_average_variables() still lack somthing #del variables_to_restore['input/vis-image/ExponentialMovingAverage'] #del variables_to_restore['input/vis-image/Adam_1'] #del variables_to_restore['train/beta2_power'] #del variables_to_restore['train/beta1_power'] #del variables_to_restore['input/vis-image/Adam'] saver = tf.train.Saver(variables_to_restore) merged_summary = tf.summary.merge_all() summary_writer = tf.summary.FileWriter( FLAGS.vis_dir + img_path[img_path.rfind('/'):img_path.rfind('.')]) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir) if ckpt and ckpt.model_checkpoint_path: # Restores from checkpoint saver.restore(sess, ckpt.model_checkpoint_path) # Assuming model_checkpoint_path looks something like: # /my-favorite-path/cifar10_train/model.ckpt-0, # extract global_step from it. global_step = ckpt.model_checkpoint_path.split('/')[-1].split( '-')[-1] else: print('No checkpoint file found') return summary_writer.add_graph(sess.graph) #print(sess.run(image)) #hang forever? # Start the queue runners. coord = tf.train.Coordinator() try: threads = [] for qr in tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS): threads.extend( qr.create_threads(sess, coord=coord, daemon=True, start=True)) print(sess.run(action)) ''' pool1, argmax = sess.run(action) raw = [[0 for x in range(FLAGS.batch_size)] for y in range(IMAGE_SIZE*IMAGE_SIZE*64)] for i in range(int(IMAGE_SIZE/2)*int(IMAGE_SIZE/2)*64): for j in range(FLAGS.batch_size): raw[j][argmax[j][i]] = pool1[j][i] unpooled = tf.conver_to_tensor(raw) unpooled = tf.reshape(unpooled, [FLAGS.batch_size, IMAGE_SIZE, IMAGE_SIZE, 64]) unpooled_trans = general.deconv1(unpooled, kernel1) tf.summary.image("reverse_pool1_discrete", unpooled_trans, max_outputs=16) #neurons = tf.split(argmax, 64, axis=3) #neurons = tf.squeeze(neurons) #tf.summary.image("argmax_pool1", ) ''' summary = sess.run(merged_summary) summary_writer.add_summary(summary, 0) except Exception as e: # pylint: disable=broad-except coord.request_stop(e) coord.request_stop() coord.join(threads, stop_grace_period_secs=10) print('here3') return
def main(_): ps_hosts = FLAGS.ps_hosts.split(",") worker_hosts = FLAGS.worker_hosts.split(",") # Create a cluster from the parameter server and worker hosts. cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts}) # Create and start a server for the local task. server = tf.train.Server(cluster, job_name=FLAGS.job_name, task_index=FLAGS.task_index) if FLAGS.job_name == "ps": server.join() elif FLAGS.job_name == "worker": # Assigns ops to the local worker by default. with tf.device(tf.train.replica_device_setter( worker_device="/job:worker/task:%d" % FLAGS.task_index, cluster=cluster)): images, labels = general.distorted_inputs() # Build a Graph that computes the logits predictions from the # inference model. logits = general.inference(images) # Calculate loss. loss = general.loss(logits, labels) global_step = tf.contrib.framework.get_or_create_global_step() train_op = tf.train.AdagradOptimizer(0.01).minimize( loss, global_step=global_step) class _LoggerHook(tf.train.SessionRunHook): """Logs loss and runtime.""" def begin(self): self._step = -1 self._start_time = time.time() def before_run(self, run_context): self._step += 1 return tf.train.SessionRunArgs([loss]) # Asks for loss value. def after_run(self, run_context, run_values): if self._step % 20 == 0: current_time = time.time() duration = current_time - self._start_time self._start_time = current_time loss_value = run_values.results[0] examples_per_sec = 20 * 128 / duration sec_per_batch = float(duration / 20) format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f ' 'sec/batch)') print (format_str % (datetime.now(), self._step, loss_value, examples_per_sec, sec_per_batch)) # The StopAtStepHook handles stopping after running given steps. hooks=[tf.train.StopAtStepHook(last_step=1000),_LoggerHook()] # The MonitoredTrainingSession takes care of session initialization, # restoring from a checkpoint, saving to a checkpoint, and closing when done # or an error occurs. with tf.train.MonitoredTrainingSession(master=server.target, is_chief=(FLAGS.task_index == 0), checkpoint_dir="./logs/train_logs", hooks=hooks) as mon_sess: while not mon_sess.should_stop(): # Run a training step asynchronously. # See `tf.train.SyncReplicasOptimizer` for additional details on how to # perform *synchronous* training. # mon_sess.run handles AbortedError in case of preempted PS. mon_sess.run(train_op)
def build_and_save(images, builder, output_graph): # Build a Graph that computes the logits predictions from the # inference model. logits = general.inference(images) # Restore the moving average version of the learned variables for eval. variable_averages = tf.train.ExponentialMovingAverage( general.MOVING_AVERAGE_DECAY) variables_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variables_to_restore) merged_summary = tf.summary.merge_all() # Build the summary operation based on the TF collection of Summaries. #summary_op = tf.summary.merge_all() # Before exporting our graph, we need to precise what is our output node # This is how TF decides what part of the Graph he has to keep and what part it can dump # NOTE: this variable is plural, because you can have multiple output nodes output_node_names = "softmax_linear/softmax_linear" # We clear devices to allow TensorFlow to control on which device it will load operations clear_devices = True summary_writer = tf.summary.FileWriter(FLAGS.save_dir) graph = tf.get_default_graph() input_graph_def = graph.as_graph_def() with tf.Session() as sess: ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir) if ckpt and ckpt.model_checkpoint_path: # Restores from checkpoint saver.restore(sess, ckpt.model_checkpoint_path) # Assuming model_checkpoint_path looks something like: # /my-favorite-path/cifar10_train/model.ckpt-0, # extract global_step from it. global_step = ckpt.model_checkpoint_path.split('/')[-1].split( '-')[-1] else: print('No checkpoint file found') return summary_writer.add_graph(sess.graph) # Start the queue runners. coord = tf.train.Coordinator() try: threads = [] for qr in tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS): threads.extend( qr.create_threads(sess, coord=coord, daemon=True, start=True)) # We use a built-in TF helper to export variables to constants output_graph_def = graph_util.convert_variables_to_constants( sess, # The session is used to retrieve the weights input_graph_def, # The graph_def is used to retrieve the nodes output_node_names.split( "," ) # The output node names are used to select the usefull nodes ) # Finally we serialize and dump the output graph to the filesystem with tf.gfile.GFile(output_graph, "wb") as f: f.write(output_graph_def.SerializeToString()) print("%d ops in the final graph." % len(output_graph_def.node)) #什么也不干 builder.add_meta_graph_and_variables( sess, [tf.saved_model.tag_constants.SERVING]) #builder.save(True) builder.save() except Exception as e: # pylint: disable=broad-except coord.request_stop(e) coord.request_stop() coord.join(threads, stop_grace_period_secs=10)
def train(): """Train CIFAR-10 for a number of steps.""" with tf.Graph().as_default(): global_step = tf.contrib.framework.get_or_create_global_step() # Get images and labels for CIFAR-10. # Force input pipeline to CPU:0 to avoid operations sometimes ending up on # GPU and resulting in a slow down. with tf.device('/cpu:0'): images, labels = general.distorted_inputs() # Build a Graph that computes the logits predictions from the # inference model. logits = general.inference(images) # Calculate loss. loss = general.loss(logits, labels) #Calculate accuracy accuracy = general.accuracy(logits, labels) # updates the model parameters. train_op = general.train(loss, global_step) #builder = tf.saved_model.builder.SavedModelBuilder(general.MODEL_DIR) //can't save later in end() because the graph will be frozen after begin() class _LoggerHook(tf.train.SessionRunHook): """Logs loss and runtime.""" def begin(self): self._step = -1 self._start_time = time.time() def before_run(self, run_context): self._step += 1 return tf.train.SessionRunArgs([loss, accuracy ]) # Asks for loss value. def after_run(self, run_context, run_values): if self._step % FLAGS.log_frequency == 0: current_time = time.time() duration = current_time - self._start_time self._start_time = current_time loss_value = run_values.results[0] examples_per_sec = FLAGS.log_frequency * FLAGS.batch_size / duration sec_per_batch = float(duration / FLAGS.log_frequency) format_str = ( '%s: step %d, loss = %.2f (%.1f examples/sec; %.3f ' 'sec/batch)') print(format_str % (datetime.now(), self._step, loss_value, examples_per_sec, sec_per_batch)) if self._step % FLAGS.eval_frequency == 0: accuracy = run_values.results[1] print('%s: precision @ 1 = %.3f' % (datetime.now(), accuracy)) #if self._step == FLAGS.max_steps -1: #builder = run_values.results[2] #def end(self, session): with tf.train.MonitoredTrainingSession( checkpoint_dir=FLAGS.train_dir, hooks=[ tf.train.StopAtStepHook(last_step=FLAGS.max_steps), tf.train.NanTensorHook(loss), _LoggerHook() ], config=tf.ConfigProto(log_device_placement=FLAGS. log_device_placement)) as mon_sess: while not mon_sess.should_stop(): mon_sess.run(train_op)
def evaluate(): """Run Eval once. Args: saver: Saver. summary_writer: Summary writer. top_k_op: Top K op. summary_op: Summary op. """ with tf.Graph().as_default() as g: # Get images and labels for CIFAR-10. eval_data = FLAGS.eval_data == 'test' images, labels = read_image.inputs(eval_data, FLAGS.eval_batch_size) #这样居然也可以 FLAGS.batch_size = FLAGS.eval_batch_size # Build a Graph that computes the logits predictions from the # inference model. logits = general.inference(images) accuracy = general.accuracy(logits, labels) # Calculate predictions. top_k_op = tf.nn.in_top_k(logits, labels, 1) # Restore the moving average version of the learned variables for eval. variable_averages = tf.train.ExponentialMovingAverage( general.MOVING_AVERAGE_DECAY) variables_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variables_to_restore) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, g) with tf.Session() as sess: ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir) if ckpt and ckpt.model_checkpoint_path: # Restores from checkpoint saver.restore(sess, ckpt.model_checkpoint_path) # Assuming model_checkpoint_path looks something like: # /my-favorite-path/cifar10_train/model.ckpt-0, # extract global_step from it. global_step = ckpt.model_checkpoint_path.split('/')[-1].split( '-')[-1] else: print('No checkpoint file found') return summary_writer.add_graph(sess.graph) # Start the queue runners. coord = tf.train.Coordinator() try: threads = [] for qr in tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS): threads.extend( qr.create_threads(sess, coord=coord, daemon=True, start=True)) num_iter = int( math.ceil(FLAGS.num_examples / FLAGS.eval_batch_size)) true_count = 0 # Counts the number of correct predictions. total_sample_count = num_iter * FLAGS.batch_size step = 0 accuracy_sum = 0 while step < num_iter and not coord.should_stop(): predictions = sess.run([top_k_op]) accuracy_sum += sess.run(accuracy) true_count += np.sum(predictions) step += 1 # Compute precision @ 1. precision = true_count / total_sample_count accuracy_avg = accuracy_sum / step print('%s: precision @ 1 = %.4f' % (datetime.now(), precision)) print('%s: accuracy @ 1 = %.4f' % (datetime.now(), accuracy_avg)) ''' 2017-06-29 17:44:36.120575: precision @ 1 = 0.396 2017-06-29 17:44:36.120575: accuracy @ 1 = 0.411 真的不一样耶,为什么呢?随机吗? ''' summary = tf.Summary() summary.ParseFromString(sess.run(summary_op)) summary.value.add(tag='Precision @ 1', simple_value=precision) summary_writer.add_summary(summary, global_step) except Exception as e: # pylint: disable=broad-except coord.request_stop(e) coord.request_stop() coord.join(threads, stop_grace_period_secs=10)