Example #1
0
    def run(self):
        if not os.path.exists(self.outputDirectory):
            os.makedirs(self.outputDirectory)

        # Export sequence ontologies
        print("Exporting ontologies...", file=sys.stderr)
        ontologiesDir = os.path.join(self.outputDirectory, "ontologymaps")
        sequenceOntologyDir = os.path.join(ontologiesDir, "sequence_ontology")
        os.makedirs(sequenceOntologyDir)
        shutil.copy(os.path.join(self.inputDirectory, "sequence_ontology.txt"),
                    os.path.join(sequenceOntologyDir, "sequence_ontology.txt"))

        # Clean out, make and re-populate references directory
        # For now, assume a single, statically-named referenceSet
        utils.log("Converting references...")
        shutil.rmtree(self.refsetsDirectory, ignore_errors=True)
        os.makedirs(self.refsetsDirectory)
        shutil.copy(
            os.path.join(self.inputDirectory, "referenceset_hg37.json"),
            os.path.join(self.refsetsDirectory, "hg37.json"))

        os.makedirs(self.hg37Directory)
        for refFile in self.referenceFiles:
            refBase = os.path.splitext(refFile)[0]
            destFastaFilename = os.path.join(
                self.hg37Directory, refBase) + ".fa"
            shutil.copy(os.path.join(self.inputDirectory, refBase) + ".fa",
                        destFastaFilename)
            pysam.tabix_compress(destFastaFilename, destFastaFilename + ".gz")
            refFasta = pysam.FastaFile(destFastaFilename + ".gz")
            refFasta.close()
            os.remove(destFastaFilename)
            shutil.copy(
                os.path.join(self.inputDirectory, refBase) + ".json",
                os.path.join(self.hg37Directory, refBase) + ".json")

        # Clean out, make and repopulate dataset directories
        shutil.rmtree(self.datasetsDirectory, ignore_errors=True)
        os.makedirs(self.datasetsDirectory)

        for ds in self.datasets:
            dsdir = os.path.join(self.datasetsDirectory, ds)
            os.makedirs(dsdir)

            # Reads
            utils.log("Converting reads...")
            dsReadsdir = os.path.join(dsdir, "reads")
            os.makedirs(dsReadsdir)
            for readFile in self.datasetReads[ds]:
                destFile = os.path.join(
                    dsReadsdir,
                    readFile.split('_')[1].split('.')[0]) + ".bam"
                readSrc = pysam.AlignmentFile(
                    os.path.join(self.inputDirectory, readFile), "r")
                readDest = pysam.AlignmentFile(
                    destFile, "wb", header=readSrc.header)
                destFilePath = readDest.filename

                for readData in readSrc:
                    readDest.write(readData)
                readDest.close()
                readSrc.close()
                pysam.index(destFilePath)

            # Variants
            utils.log("Converting variants...")
            dsVariantsdir = os.path.join(dsdir, "variants")
            os.makedirs(dsVariantsdir)
            for vgroup in self.datasetVariants[ds].keys():
                vgroupdir = os.path.join(dsVariantsdir, vgroup)
                os.makedirs(vgroupdir)
                for variantFile in self.datasetVariants[ds][vgroup]:
                    destFile = os.path.join(
                        vgroupdir, variantFile.split('_')[2])
                    shutil.copy(
                        os.path.join(
                            self.inputDirectory, variantFile), destFile)
                    # Pysam's tabix_index automatically compresses the file
                    # in place, creates a tabix index.
                    pysam.tabix_index(destFile, preset="vcf")

            # Sequence Annotations
            print("Converting sequence annotations...", file=sys.stderr)
            dsSeqAnndir = os.path.join(dsdir, "sequenceAnnotations")
            os.makedirs(dsSeqAnndir)
            for seqAnnFile in self.datasetSequenceAnnotations[ds]:
                seqAnnDest = os.path.join(
                    dsSeqAnndir,
                    seqAnnFile.split('_')[1].split('.')[0]) + ".db"
                seqAnnSrc = os.path.join(self.inputDirectory, seqAnnFile)
                dbgen = generate_gff3_db.Gff32Db(seqAnnSrc, seqAnnDest)
                dbgen.run()

        print("done converting compliance data.", file=sys.stderr)
Example #2
0
    def run(self):
        if not os.path.exists(self.outputDirectory):
            os.makedirs(self.outputDirectory)
        self.repo.open("w")
        self.repo.initialise()

        referenceFileName = "ref_brca1.fa"
        inputRef = os.path.join(self.inputDirectory, referenceFileName)
        outputRef = os.path.join(self.outputDirectory, referenceFileName)
        shutil.copy(inputRef, outputRef)
        fastaFilePath = os.path.join(self.outputDirectory,
                                     referenceFileName + '.gz')
        pysam.tabix_compress(outputRef, fastaFilePath)

        with open(os.path.join(self.inputDirectory,
                               "ref_brca1.json")) as refMetadataFile:
            refMetadata = json.load(refMetadataFile)
        with open(os.path.join(self.inputDirectory,
                               "referenceset_hg37.json")) as refMetadataFile:
            refSetMetadata = json.load(refMetadataFile)

        referenceSet = references.HtslibReferenceSet(
            refSetMetadata['assemblyId'])

        referenceSet.populateFromFile(os.path.abspath(fastaFilePath))
        referenceSet.setAssemblyId(refSetMetadata['assemblyId'])
        referenceSet.setDescription(refSetMetadata['description'])
        if refSetMetadata['species']:
            speciesJson = json.dumps(refSetMetadata['species'])
            referenceSet.setSpeciesFromJson(speciesJson)  # needs a string
        referenceSet.setIsDerived(refSetMetadata['isDerived'])
        referenceSet.setSourceUri(refSetMetadata['sourceUri'])
        referenceSet.setSourceAccessions(refSetMetadata['sourceAccessions'])
        for reference in referenceSet.getReferences():
            if refSetMetadata['species']:
                speciesJsonStr = json.dumps(refMetadata['species'])
                reference.setSpeciesFromJson(speciesJsonStr)
            reference.setSourceAccessions(refMetadata['sourceAccessions'])
        self.repo.insertReferenceSet(referenceSet)

        dataset = datasets.Dataset("brca1")
        # Some info is set, it isn't important what
        dataset.setAttributes({"version": ga4gh.server.__version__})
        self.repo.insertDataset(dataset)

        hg00096Individual = biodata.Individual(dataset, "HG00096")
        with open(os.path.join(self.inputDirectory,
                               "individual_HG00096.json")) as jsonString:
            hg00096Individual.populateFromJson(jsonString.read())
        self.repo.insertIndividual(hg00096Individual)
        hg00096Biosample = biodata.Biosample(dataset, "HG00096")
        with open(os.path.join(self.inputDirectory,
                               "biosample_HG00096.json")) as jsonString:
            hg00096Biosample.populateFromJson(jsonString.read())
        hg00096Biosample.setIndividualId(hg00096Individual.getId())
        self.repo.insertBiosample(hg00096Biosample)
        hg00099Individual = biodata.Individual(dataset, "HG00099")
        with open(os.path.join(self.inputDirectory,
                               "individual_HG00099.json")) as jsonString:
            hg00099Individual.populateFromJson(jsonString.read())
        self.repo.insertIndividual(hg00099Individual)
        hg00099Biosample = biodata.Biosample(dataset, "HG00099")
        with open(os.path.join(self.inputDirectory,
                               "biosample_HG00099.json")) as jsonString:
            hg00099Biosample.populateFromJson(jsonString.read())
        hg00099Biosample.setIndividualId(hg00099Individual.getId())
        self.repo.insertBiosample(hg00099Biosample)
        hg00101Individual = biodata.Individual(dataset, "HG00101")
        with open(os.path.join(self.inputDirectory,
                               "individual_HG00101.json")) as jsonString:
            hg00101Individual.populateFromJson(jsonString.read())
        self.repo.insertIndividual(hg00101Individual)
        hg00101Biosample = biodata.Biosample(dataset, "HG00101")
        with open(os.path.join(self.inputDirectory,
                               "biosample_HG00101.json")) as jsonString:
            hg00101Biosample.populateFromJson(jsonString.read())
        hg00101Biosample.setIndividualId(hg00101Individual.getId())
        self.repo.insertBiosample(hg00101Biosample)
        readFiles = [
            "brca1_HG00096.sam", "brca1_HG00099.sam", "brca1_HG00101.sam"
        ]

        for readFile in readFiles:
            name = readFile.split('_')[1].split('.')[0]
            readSrc = pysam.AlignmentFile(
                os.path.join(self.inputDirectory, readFile), "r")
            readDest = pysam.AlignmentFile(os.path.join(
                self.outputDirectory, name + ".bam"),
                                           "wb",
                                           header=readSrc.header)
            destFilePath = readDest.filename
            for readData in readSrc:
                readDest.write(readData)
            readDest.close()
            readSrc.close()
            pysam.index(destFilePath)
            readGroupSet = reads.HtslibReadGroupSet(dataset, name)
            readGroupSet.populateFromFile(
                os.path.abspath(destFilePath),
                os.path.abspath(destFilePath + ".bai"))
            readGroupSet.setReferenceSet(referenceSet)
            dataset.addReadGroupSet(readGroupSet)
            biosamples = [hg00096Biosample, hg00099Biosample, hg00101Biosample]
            for readGroup in readGroupSet.getReadGroups():
                for biosample in biosamples:
                    if biosample.getLocalId() == readGroup.getSampleName():
                        readGroup.setBiosampleId(biosample.getId())
            self.repo.insertReadGroupSet(readGroupSet)

        ontologyMapFileName = "so-xp-simple.obo"
        inputOntologyMap = os.path.join(self.inputDirectory,
                                        ontologyMapFileName)
        outputOntologyMap = os.path.join(self.outputDirectory,
                                         ontologyMapFileName)
        shutil.copy(inputOntologyMap, outputOntologyMap)

        sequenceOntology = ontologies.Ontology("so-xp-simple")
        sequenceOntology.populateFromFile(os.path.abspath(outputOntologyMap))
        sequenceOntology._id = "so-xp-simple"
        self.repo.insertOntology(sequenceOntology)
        self.repo.addOntology(sequenceOntology)

        vcfFiles = [
            "brca1_1kgPhase3_variants.vcf", "brca1_WASH7P_annotation.vcf",
            "brca1_OR4F_annotation.vcf"
        ]
        for vcfFile in vcfFiles:
            self.addVariantSet(vcfFile, dataset, referenceSet,
                               sequenceOntology, biosamples)

        # Sequence annotations
        seqAnnFile = "brca1_gencodev19.gff3"
        seqAnnSrc = os.path.join(self.inputDirectory, seqAnnFile)
        seqAnnDest = os.path.join(self.outputDirectory, "gencodev19.db")
        dbgen = generate_gff3_db.Gff32Db(seqAnnSrc, seqAnnDest)
        dbgen.run()
        gencode = sequence_annotations.Gff3DbFeatureSet(dataset, "gencodev19")
        gencode.setOntology(sequenceOntology)
        gencode.populateFromFile(os.path.abspath(seqAnnDest))
        gencode.setReferenceSet(referenceSet)

        self.repo.insertFeatureSet(gencode)

        # add g2p featureSet
        g2pPath = os.path.join(self.inputDirectory, "cgd")
        # copy all files input directory to output path
        outputG2PPath = os.path.join(self.outputDirectory, "cgd")
        os.makedirs(outputG2PPath)
        for filename in glob.glob(os.path.join(g2pPath, '*.*')):
            shutil.copy(filename, outputG2PPath)

        featuresetG2P = g2p_featureset.PhenotypeAssociationFeatureSet(
            dataset, os.path.abspath(outputG2PPath))
        featuresetG2P.setOntology(sequenceOntology)
        featuresetG2P.setReferenceSet(referenceSet)
        featuresetG2P.populateFromFile(os.path.abspath(outputG2PPath))
        self.repo.insertFeatureSet(featuresetG2P)

        # add g2p phenotypeAssociationSet
        phenotypeAssociationSet = \
            g2p_associationset.RdfPhenotypeAssociationSet(
                dataset, "cgd", os.path.abspath(outputG2PPath))
        self.repo.insertPhenotypeAssociationSet(phenotypeAssociationSet)

        dataset.addFeatureSet(gencode)

        # RNA Quantification
        rnaDbName = os.path.join(self.outputDirectory, "rnaseq.db")
        store = rnaseq2ga.RnaSqliteStore(rnaDbName)
        store.createTables()
        rnaseq2ga.rnaseq2ga(self.inputDirectory + "/rna_brca1.tsv",
                            rnaDbName,
                            "rna_brca1.tsv",
                            "rsem",
                            featureType="transcript",
                            readGroupSetNames="HG00096",
                            dataset=dataset,
                            featureSetNames="gencodev19",
                            biosampleId=hg00096Biosample.getId())
        rnaQuantificationSet = rna_quantification.SqliteRnaQuantificationSet(
            dataset, "rnaseq")
        rnaQuantificationSet.setReferenceSet(referenceSet)
        rnaQuantificationSet.populateFromFile(os.path.abspath(rnaDbName))
        self.repo.insertRnaQuantificationSet(rnaQuantificationSet)
    def run(self):
        if not os.path.exists(self.outputDirectory):
            os.makedirs(self.outputDirectory)
        self.repo.open("w")
        self.repo.initialise()

        referenceFileName = "ref_brca1.fa"
        inputRef = os.path.join(
            self.inputDirectory, referenceFileName)
        outputRef = os.path.join(
            self.outputDirectory, referenceFileName)
        shutil.copy(inputRef, outputRef)
        fastaFilePath = os.path.join(
            self.outputDirectory,
            referenceFileName + '.gz')
        pysam.tabix_compress(
            outputRef, fastaFilePath)

        with open(
                os.path.join(
                    self.inputDirectory, "ref_brca1.json")) as refMetadataFile:
            refMetadata = json.load(refMetadataFile)
        with open(
                os.path.join(
                    self.inputDirectory,
                    "referenceset_hg37.json")) as refMetadataFile:
            refSetMetadata = json.load(refMetadataFile)

        referenceSet = references.HtslibReferenceSet(
            refSetMetadata['assemblyId'])

        referenceSet.populateFromFile(fastaFilePath)
        referenceSet.setAssemblyId(refSetMetadata['assemblyId'])
        referenceSet.setDescription(refSetMetadata['description'])
        referenceSet.setNcbiTaxonId(refSetMetadata['ncbiTaxonId'])
        referenceSet.setIsDerived(refSetMetadata['isDerived'])
        referenceSet.setSourceUri(refSetMetadata['sourceUri'])
        referenceSet.setSourceAccessions(refSetMetadata['sourceAccessions'])
        for reference in referenceSet.getReferences():
            reference.setNcbiTaxonId(refMetadata['ncbiTaxonId'])
            reference.setSourceAccessions(
                refMetadata['sourceAccessions'])
        self.repo.insertReferenceSet(referenceSet)

        dataset = datasets.Dataset("brca1")
        self.repo.insertDataset(dataset)

        hg00096Individual = biodata.Individual(dataset, "HG00096")
        with open(
                os.path.join(
                    self.inputDirectory,
                    "individual_HG00096.json")) as jsonString:
            hg00096Individual.populateFromJson(jsonString.read())
        self.repo.insertIndividual(hg00096Individual)
        hg00096BioSample = biodata.BioSample(dataset, "HG00096")
        with open(
                os.path.join(
                    self.inputDirectory,
                    "bioSample_HG00096.json")) as jsonString:
            hg00096BioSample.populateFromJson(jsonString.read())
        hg00096BioSample.setIndividualId(hg00096Individual.getId())
        self.repo.insertBioSample(hg00096BioSample)
        hg00099Individual = biodata.Individual(dataset, "HG00099")
        with open(
                os.path.join(
                    self.inputDirectory,
                    "individual_HG00099.json")) as jsonString:
            hg00099Individual.populateFromJson(jsonString.read())
        self.repo.insertIndividual(hg00099Individual)
        hg00099BioSample = biodata.BioSample(dataset, "HG00099")
        with open(
                os.path.join(
                    self.inputDirectory,
                    "bioSample_HG00099.json")) as jsonString:
            hg00099BioSample.populateFromJson(jsonString.read())
        hg00099BioSample.setIndividualId(hg00099Individual.getId())
        self.repo.insertBioSample(hg00099BioSample)
        hg00101Individual = biodata.Individual(dataset, "HG00101")
        with open(
                os.path.join(
                    self.inputDirectory,
                    "individual_HG00101.json")) as jsonString:
            hg00101Individual.populateFromJson(jsonString.read())
        self.repo.insertIndividual(hg00101Individual)
        hg00101BioSample = biodata.BioSample(dataset, "HG00101")
        with open(
                os.path.join(
                    self.inputDirectory,
                    "bioSample_HG00101.json")) as jsonString:
            hg00101BioSample.populateFromJson(jsonString.read())
        hg00101BioSample.setIndividualId(hg00101Individual.getId())
        self.repo.insertBioSample(hg00101BioSample)

        readFiles = [
            "brca1_HG00096.sam",
            "brca1_HG00099.sam",
            "brca1_HG00101.sam"]

        for readFile in readFiles:
            name = readFile.split('_')[1].split('.')[0]
            readSrc = pysam.AlignmentFile(
                os.path.join(self.inputDirectory, readFile), "r")
            readDest = pysam.AlignmentFile(
                os.path.join(
                    self.outputDirectory,
                    name + ".bam"),
                "wb", header=readSrc.header)
            destFilePath = readDest.filename
            for readData in readSrc:
                readDest.write(readData)
            readDest.close()
            readSrc.close()
            pysam.index(destFilePath)
            readGroupSet = reads.HtslibReadGroupSet(dataset, name)
            readGroupSet.populateFromFile(destFilePath, destFilePath + ".bai")
            readGroupSet.setReferenceSet(referenceSet)
            bioSamples = [hg00096BioSample, hg00099BioSample, hg00101BioSample]
            for readGroup in readGroupSet.getReadGroups():
                for bioSample in bioSamples:
                    if bioSample.getLocalId() == readGroup.getSampleName():
                        readGroup.setBioSampleId(bioSample.getId())
            self.repo.insertReadGroupSet(readGroupSet)

        ontologyMapFileName = "so-xp-simple.obo"
        inputOntologyMap = os.path.join(
            self.inputDirectory, ontologyMapFileName)
        outputOntologyMap = os.path.join(
            self.outputDirectory, ontologyMapFileName)
        shutil.copy(inputOntologyMap, outputOntologyMap)

        sequenceOntology = ontologies.Ontology("so-xp-simple")
        sequenceOntology.populateFromFile(outputOntologyMap)
        sequenceOntology._id = "so-xp-simple"
        self.repo.insertOntology(sequenceOntology)
        self.repo.addOntology(sequenceOntology)

        vcfFiles = [
            "brca1_1kgPhase3_variants.vcf",
            "brca1_WASH7P_annotation.vcf",
            "brca1_OR4F_annotation.vcf"]
        for vcfFile in vcfFiles:
            self.addVariantSet(
                vcfFile,
                dataset,
                referenceSet,
                sequenceOntology,
                bioSamples)

        seqAnnFile = "brca1_gencodev19.gff3"
        seqAnnSrc = os.path.join(self.inputDirectory, seqAnnFile)
        seqAnnDest = os.path.join(self.outputDirectory, "gencodev19.db")
        dbgen = generate_gff3_db.Gff32Db(seqAnnSrc, seqAnnDest)
        dbgen.run()
        gencode = sequenceAnnotations.Gff3DbFeatureSet(dataset, "gencodev19")
        gencode.setOntology(sequenceOntology)
        gencode.populateFromFile(seqAnnDest)
        gencode.setReferenceSet(referenceSet)

        self.repo.insertFeatureSet(gencode)

        self.repo.commit()

        print("Done converting compliance data.", file=sys.stderr)