train_sizes=np.linspace(0.1, 1.0, 20))
fig_adult_lc.savefig(root_path + "/plots/decision_tree/adult_lc.png")

fig_flag_lc = gp.plot_learning_curve(dt_flag,
                                     "flag learning curve",
                                     flag_x,
                                     flag_y,
                                     cv=3,
                                     train_sizes=np.linspace(0.1, 1.0, 20))
fig_flag_lc.savefig(root_path + "/plots/decision_tree/flag_lc.png")

print("########## Plotting Max Depth Validation Curves... ##########")
fig_adult_vc1 = gp.plot_validation_curve(dt_adult,
                                         "Max Depth Adult Validation Curve",
                                         adult_x,
                                         adult_y,
                                         param_name="max_depth",
                                         param_range=np.linspace(1, 50, 25),
                                         cv=5)
fig_adult_vc1.savefig(root_path +
                      "/plots/decision_tree/max_depth_adult_vc.png")

fig_flag_vc1 = gp.plot_validation_curve(dt_flag,
                                        "Max Depth Flag Validation Curve",
                                        flag_x,
                                        flag_y,
                                        param_name="max_depth",
                                        param_range=np.linspace(1, 50, 25),
                                        cv=5)
fig_flag_vc1.savefig(root_path + "/plots/decision_tree/max_depth_flag_vc.png")
                                      train_sizes=np.linspace(0.1, 1.0, 7))
fig_adult_lc.savefig(root_path + "/plots/nn/adult_lc.png")

fig_flag_lc = gp.plot_learning_curve(nn_flag,
                                     "Flag - learning curve",
                                     flag_x.todense(),
                                     flag_y.values.ravel(),
                                     cv=3,
                                     train_sizes=np.linspace(0.1, 1.0, 50))
fig_flag_lc.savefig(root_path + "/plots/nn/flag_lc.png")

print("########## Plotting alpha Validation Curves... ##########")
fig_adult_vc1 = gp.plot_validation_curve(nn_adult,
                                         "Adult - alpha Validation Curve",
                                         adult_x.todense(),
                                         adult_y.values.ravel(),
                                         param_name="alpha",
                                         param_range=np.linspace(
                                             0.01, 0.05, 5),
                                         cv=3)
fig_adult_vc1.savefig(root_path + "/plots/nn/alpha_adult_vc.png")

fig_flag_vc1 = gp.plot_validation_curve(
    nn_flag,
    "Flag - alpha Validation Curve",
    flag_x.todense(),
    flag_y.values.ravel(),
    param_name="alpha",
    param_range=10.0**-np.arange(0.1, 7, 0.1),
    cv=5)
fig_flag_vc1.savefig(root_path + "/plots/nn/alpha_flag_vc.png")
Example #3
0
                                      train_sizes=np.linspace(0.1, 1.0, 40))
fig_adult_lc.savefig(root_path + "/plots/boost/adult_lc.png")

fig_flag_lc = gp.plot_learning_curve(boost_flag,
                                     "Flag - learning curve",
                                     flag_x.todense(),
                                     flag_y.values.ravel(),
                                     cv=3,
                                     train_sizes=np.linspace(0.1, 1.0, 40))
fig_flag_lc.savefig(root_path + "/plots/boost/flag_lc.png")

print("########## Plotting n_estimators Validation Curves... ##########")
fig_adult_vc1 = gp.plot_validation_curve(
    boost_adult,
    "Adult - n_estimators Validation Curve",
    adult_x.todense(),
    adult_y.values.ravel(),
    param_name="n_estimators",
    param_range=range(1, 100, 2),
    cv=5)
fig_adult_vc1.savefig(root_path + "/plots/boost/n_estimators_adult_vc.png")

fig_flag_vc1 = gp.plot_validation_curve(boost_flag,
                                        "Flag - n_estimators Validation Curve",
                                        flag_x.todense(),
                                        flag_y.values.ravel(),
                                        param_name="n_estimators",
                                        param_range=range(1, 100),
                                        cv=5)
fig_flag_vc1.savefig(root_path + "/plots/boost/n_estimators_flag_vc.png")

print("########## Plotting learning_rate Validation Curves... ##########")
Example #4
0
                                       train_sizes=np.linspace(0.1, 1.0, 5))
fig_adult_lc2.savefig(root_path + "/plots/svm/rbf_adult_lc.png")

fig_flag_lc2 = gp.plot_learning_curve(svc_flag2,
                                      "Flag - learning curve",
                                      flag_x.todense(),
                                      flag_y.values.ravel(),
                                      cv=3,
                                      train_sizes=np.linspace(0.1, 1.0, 10))
fig_flag_lc2.savefig(root_path + "/plots/svm/rbf_flag_lc.png")

print("########## Plotting C Validation Curves... ##########")
fig_adult_vc1 = gp.plot_validation_curve(svc_adult,
                                         "Adult - C Validation Curve",
                                         adult_x.todense(),
                                         adult_y.values.ravel(),
                                         param_name="C",
                                         param_range=np.linspace(0.01, 4, 50),
                                         cv=5)
fig_adult_vc1.savefig(root_path + "/plots/svm/C_adult_vc.png")

fig_flag_vc1 = gp.plot_validation_curve(svc_flag,
                                        "Flag - C Validation Curve",
                                        flag_x.todense(),
                                        flag_y.values.ravel(),
                                        param_name="C",
                                        param_range=np.linspace(0.01, 0.5, 25),
                                        cv=5)
fig_flag_vc1.savefig(root_path + "/plots/svm/C_flag_vc.png")

fig_adult_vc2 = gp.plot_validation_curve(svc_adult,
Example #5
0
                                      train_sizes=np.linspace(0.1, 1.0, 20))
fig_adult_lc.savefig(root_path + "/plots/knn/adult_lc.png")

fig_flag_lc = gp.plot_learning_curve(knn_flag,
                                     "Flag - learning curve",
                                     flag_x.todense(),
                                     flag_y.values.ravel(),
                                     cv=3,
                                     train_sizes=np.linspace(0.1, 1.0, 20))
fig_flag_lc.savefig(root_path + "/plots/knn/flag_lc.png")

print("########## Plotting n_neighbors Validation Curves... ##########")
fig_adult_vc1 = gp.plot_validation_curve(
    knn_adult,
    "Adult - n_neighbors Validation Curve",
    adult_x.todense(),
    adult_y.values.ravel(),
    param_name="n_neighbors",
    param_range=range(1, 50),
    cv=5)
fig_adult_vc1.savefig(root_path + "/plots/knn/n_neighbors2_adult_vc.png")

fig_flag_vc1 = gp.plot_validation_curve(knn_flag,
                                        "Flag - n_neighbors Validation Curve",
                                        flag_x.todense(),
                                        flag_y.values.ravel(),
                                        param_name="n_neighbors",
                                        param_range=range(1, 50),
                                        cv=5)
fig_flag_vc1.savefig(root_path + "/plots/knn/n_neighbors2_flag_vc.png")

print("########## Plotting Distance Metric Validation Curves... ##########")