Example #1
0
def main(params):
    with open(params.lowshotmeta, 'r') as f:
        lowshotmeta = json.load(f)
    accs = np.zeros(6)

    with open(params.experimentpath.format(params.experimentid), 'r') as f:
        exp = json.load(f)

    novel_idx = np.array(exp)[:, :params.lowshotn]

    if params.testsetup:
        novel_classes = lowshotmeta['novel_classes_2']
        base_classes = lowshotmeta['base_classes_2']
    else:
        novel_classes = lowshotmeta['novel_classes_1']
        base_classes = lowshotmeta['base_classes_1']
    novel_idx = np.sort(novel_idx[novel_classes, :].reshape(-1))

    generator = None
    generator_fn = None

    if params.generator_name != '':
        generator_fn, generator = generation.get_generator(
            params.generator_name, params.generator_file)

    with h5py.File(params.trainfile, 'r') as f:
        lowshot_dataset = LowShotDataset(f, base_classes, novel_classes,
                                         novel_idx, params.max_per_label,
                                         generator_fn, generator)
        model = training_loop(lowshot_dataset, params.numclasses, params,
                              params.batchsize, params.maxiters)

    print('trained')
    with h5py.File(params.testfile, 'r') as f:
        test_loader = get_test_loader(f)
        accs, results = eval_loop(test_loader, model, base_classes,
                                  novel_classes)

    modelrootdir = os.path.basename(os.path.dirname(params.trainfile))
    outpath = os.path.join(
        params.outdir, modelrootdir +
        '_lr_{:.3f}_wd_{:.3f}_expid_{:d}_lowshotn_{:d}_maxgen_{:d}.json'.
        format(params.lr, params.wd, params.experimentid, params.lowshotn,
               params.max_per_label))
    with open(outpath, 'w+') as f:
        json.dump(
            dict(lr=params.lr,
                 wd=params.wd,
                 expid=params.experimentid,
                 lowshotn=params.lowshotn,
                 accs=accs.tolist()), f)

    return results
Example #2
0
        exp = json.load(f)
    novel_idx = np.array(exp)[:, :params.lowshotn]
    if params.testsetup:
        novel_classes = lowshotmeta['novel_classes_2'][:params.n_way]
        base_classes = lowshotmeta['base_classes_2']
    else:
        novel_classes = lowshotmeta['novel_classes_1'][:params.n_way]
        base_classes = lowshotmeta['base_classes_1']

    novel_idx = np.sort(novel_idx[novel_classes, :].reshape(-1))

    generator = None
    generator_fn = None

    if params.generator_name != '':
        generator_fn, generator = generation.get_generator(
            params.generator_name, params.generator_file)

    with h5py.File(params.trainfile, 'r') as f:
        lowshot_dataset = LowShotDataset(f, base_classes, novel_classes,
                                         novel_idx, params.max_per_label,
                                         generator_fn, generator)
        model = training_loop(lowshot_dataset, params.numclasses, params,
                              params.batchsize, params.maxiters)

    print('trained')
    with h5py.File(params.testfile, 'r') as f:
        test_loader = get_test_loader(f)
        accs = eval_loop(test_loader, model, base_classes, novel_classes)

    modelrootdir = os.path.basename(os.path.dirname(params.trainfile))
    outpath = os.path.join(
Example #3
0
def test(test_loader, test_dataset, model, cfg):
    model.eval()
    generator = get_generator(model)
    model_counter = defaultdict(int)
    if cfg['mode'] == 'eval':
        eval_meshes(test_loader, test_dataset, model, cfg)
        return 0
    for it, data in enumerate(tqdm(test_loader)):
        # Output folders
        mesh_dir = os.path.join(cfg['out']['out_dir'], 'meshes')
        pointcloud_dir = os.path.join(cfg['out']['out_dir'], 'pointcloud')
        in_dir = os.path.join(cfg['out']['out_dir'], 'input')
        generation_vis_dir = os.path.join(
            cfg['out']['out_dir'],
            'vis',
        )

        # Get index etc.
        idx = data['idx'].item()

        try:
            model_dict = test_dataset.get_model_dict(idx)
        except AttributeError:
            model_dict = {'model': str(idx), 'category': 'n/a'}

        modelname = model_dict['model']
        category_id = model_dict.get('category', 'n/a')

        try:
            category_name = test_dataset.metadata[category_id].get(
                'name', 'n/a')
        except AttributeError:
            category_name = 'n/a'

        if category_id != 'n/a':
            mesh_dir = os.path.join(mesh_dir, str(category_id))
            pointcloud_dir = os.path.join(pointcloud_dir, str(category_id))
            in_dir = os.path.join(in_dir, str(category_id))

            folder_name = str(category_id)
            if category_name != 'n/a':
                folder_name = str(folder_name) + '_' + category_name.split(
                    ',')[0]

            generation_vis_dir = os.path.join(generation_vis_dir, folder_name)

        if not os.path.exists(generation_vis_dir):
            os.makedirs(generation_vis_dir)

        if not os.path.exists(mesh_dir):
            os.makedirs(mesh_dir)

        if not os.path.exists(pointcloud_dir):
            os.makedirs(pointcloud_dir)

        if not os.path.exists(in_dir):
            os.makedirs(in_dir)

        # Generate outputs
        out_file_dict = {}

        # Also copy ground truth
        out = generator.generate_mesh(data)

        # Get statistics
        try:
            mesh, stats_dict = out
        except TypeError:
            mesh, stats_dict = out, {}
        #time_dict.update(stats_dict)

        # Write output
        mesh_out_file = os.path.join(mesh_dir, '%s.off' % modelname)
        mesh.export(mesh_out_file)
        out_file_dict['mesh'] = mesh_out_file
        # Save inputs
        inputs_path = os.path.join(in_dir, '%s.jpg' % modelname)
        inputs = data['inputs'].squeeze(0).cpu()
        visualize_data(inputs, 'img', inputs_path)
        out_file_dict['in'] = inputs_path
        # Copy to visualization directory for first vis_n_output samples
        c_it = model_counter[category_id]
        if c_it < cfg['test']['vis_n_outputs']:
            # Save output files
            img_name = '%02d.off' % c_it
            for k, filepath in out_file_dict.items():
                ext = os.path.splitext(filepath)[1]
                out_file = os.path.join(generation_vis_dir,
                                        '%02d_%s%s' % (c_it, k, ext))
                shutil.copyfile(filepath, out_file)

        model_counter[category_id] += 1
        exp = json.load(f)
    novel_idx = np.array(exp)[:,:params.lowshotn]
    if params.testsetup:
        novel_classes = lowshotmeta['novel_classes_2']
        base_classes = lowshotmeta['base_classes_2']
    else:
        novel_classes = lowshotmeta['novel_classes_1']
        base_classes = lowshotmeta['base_classes_1']

    novel_idx = np.sort(novel_idx[novel_classes,:].reshape(-1))

    generator=None
    generator_fn=None

    if params.generator_name!='':
        generator_fn, generator = generation.get_generator(params.generator_name, params.generator_file)


    with h5py.File(params.trainfile, 'r') as f:
        lowshot_dataset = LowShotDataset(f, base_classes, novel_classes, novel_idx, params.max_per_label, generator_fn, generator)
        model = training_loop(lowshot_dataset, params.numclasses, params, params.batchsize, params.maxiters)

    print('trained')
    with h5py.File(params.testfile, 'r') as f:
        test_loader = get_test_loader(f)
        accs = eval_loop(test_loader, model, base_classes, novel_classes)

    modelrootdir = os.path.basename(os.path.dirname(params.trainfile))
    outpath = os.path.join(params.outdir, modelrootdir+'_lr_{:.3f}_wd_{:.3f}_expid_{:d}_lowshotn_{:d}_maxgen_{:d}.json'.format(
                                    params.lr, params.wd, params.experimentid, params.lowshotn, params.max_per_label))
    with open(outpath, 'w') as f:
Example #5
0
        exp = json.load(f)
    novel_idx = np.array(exp)[:, :params.lowshotn]
    if params.testsetup:
        novel_classes = lowshotmeta['novel_classes_2']
        base_classes = lowshotmeta['base_classes_2']
    else:
        novel_classes = lowshotmeta['novel_classes_1']
        base_classes = lowshotmeta['base_classes_1']

    novel_idx = np.sort(novel_idx[novel_classes, :].reshape(-1))

    generator = None
    generator_fn = None

    if params.generator_name != '':
        generator_fn, generator, trial_gen = generation.get_generator(
            params.generator_name, params.generator_file)

    with h5py.File(params.trainfile, 'r') as f:
        if params.generator_type == 1:
            lowshot_dataset = LowShotDataset(
                f,
                base_classes,
                novel_classes,
                novel_idx,
                params.max_per_label,
                trial_gen,
                generator,
                centroid_file=params.centroid_file,
                generator_index=params.generator_type)
        else:
            lowshot_dataset = LowShotDataset(