Example #1
0
def downhill(prob_func,namefree,parmfree,namefix,parmfix,data,eventinfo,parmref,isspitz,use_color=False,I_minus_L=[]):
    start = time.clock()
    tbegin,talert,t0par,t0base,mjd = parmref
    alpha,delta,oblats,oblongs,obgammas = eventinfo
    ## compute (qn,qe) once and for all ##
    qnqe = []
    for iob in range(len(data)):
        date = data[iob][0]
        qnqe_iob = genlc.getqnqe(date,alpha,delta,t0par,oblats[iob],oblongs[iob],isspitz[iob])
        qnqe.append(qnqe_iob)
### Get chi2 based on initial parameters ###
#    chi2_obs,dof,fsfb = prob_func(parmfree,parmfix,namefree,namefix,data,eventinfo,t0par,isspitz,True,use_color,I_minus_L,qnqe,get_chi2_obs=True)
#    print chi2_obs,dof
#    parmbest = fmin(prob_func,parmfree,args=(parmfix,namefree,namefix,data,eventinfo,t0par,isspitz,True,use_color,I_minus_L))
    parmbest,chi2min,iter,funcalls,warnflag,allevcs = fmin(prob_func,parmfree,args=(parmfix,namefree,namefix,data,eventinfo,t0par,isspitz,True,use_color,I_minus_L,qnqe),full_output=True,retall=True,maxiter=3000,maxfun=10000)
    print 'best parameters: '
    print namefree
    print ['%.3f'%iparm for iparm in parmbest]
Example #2
0
def mcmc(prob_func,eventname,namefree,parmfree,namefix,parmfix,data,eventinfo,parmref,isspitz,use_color=False,I_minus_L=[]):
    start = time.clock()
    tbegin,talert,t0par,t0base,mjd = parmref
    alpha,delta,oblats,oblongs,obgammas = eventinfo
    ## compute (qn,qe) once and for all ##
    qnqe = []
    for iob in range(len(data)):
        date = data[iob][0]
        qnqe_iob = genlc.getqnqe(date,alpha,delta,t0par,oblats[iob],oblongs[iob],isspitz[iob])
        qnqe.append(qnqe_iob)
### Get chi2 based on initial parameters ###
#    chi2_obs,dof,fsfb = prob_func(parmfree,parmfix,namefree,namefix,data,eventinfo,t0par,isspitz,True,use_color,I_minus_L,qnqe,get_chi2_obs=True)
#    print chi2_obs,dof
    ndim = len(parmfree)
    nwalkers = 30
    pos = [parmfree+1e-3*np.random.randn(ndim) for i in range(nwalkers)]
    sampler = emcee.EnsembleSampler(nwalkers,ndim,prob_func,args=(parmfix,namefree,namefix,data,eventinfo,t0par,isspitz,False,use_color,I_minus_L,qnqe),threads=1)
    pos,lnprob,rstate = sampler.run_mcmc(pos,100)  ## burn in
    sampler.reset()
    sampler.run_mcmc(pos,200)  ## MCMC sampling
    ## save the MCMC chain and other useful information ##
    chain = sampler.chain.reshape((-1,ndim),order='F')
    chi2s = -2*sampler.lnprobability.reshape(-1,order='F')
    headerstr = '%s '%namefree[0]
    for i in range(1,len(namefree)):
        headerstr += '%s '%namefree[i]
    np.savetxt('output/mcmc/chain-%s.dat'%eventname,chain,fmt='%f',header=headerstr)
    np.savetxt('output/mcmc/acceptance-%s'%eventname,sampler.acceptance_fraction,fmt='%f')
    np.savetxt('output/mcmc/chisq-%s.dat'%eventname,chi2s)
    ## find the best-fit and error bars ##
    parmbest = chain[chi2s==min(chi2s)][0]
    parmmean = np.median(chain,axis=0)
    parmerrs = np.std(chain,axis=0)
    print 'best parameters: '
    print namefree
    print ['%.4f'%iparm for iparm in parmbest]