Example #1
0
def fillTriangle(t, color):
    #It divides the triangle in 2 rectangle triangles, rasters the 1st triangle then goes to the second

    tYSorted = t[np.argsort(t[:, 1])]#Sort by y value(Bottom first)

    a = tYSorted[0]#Now they are sorted lowest Y first
    b = tYSorted[1]
    c = tYSorted[2]

    ab,n_ab = geom.line(a,b)
    bc,n_bc = geom.line(b,c)
    ca,n_ca = geom.line(a,c)    

    ab_step = 0
    bc_step = 0
    ca_step = 0

    if((int)(ca[1])!=0): ca_step = ca[0] / (float)(abs(ca[1]))

    if((int)(ab[1]) != 0):

        ab_step = ab[0] / (float)(abs(ab[1]))       

        for i in range((int)(b[1]-a[1])+1):#Loops across Y between a and b and draws half of the img
            a_ab_step = a[0] + (float)(i) * ab_step
            a_ca_step = a[0] + (float)(i) * ca_step

            #Swap if true so a_ab_step is always smaller
            if (a_ab_step > a_ca_step):
                buf = a_ab_step
                a_ab_step = a_ca_step
                a_ca_step = buf
            
            for j in range((int)(a_ca_step - (a_ab_step - 1)) + 2):
                v_int = (j + a_ab_step, i + a[1])
                
                #print("v_int: "+str(v_int)+" ab_step: " + str(ab_step)+" a_ac_step: " + str(a_ac_step) + " a_ab_step: " + str(a_ab_step))
                pixels[v_int] = color

    #Draws the other half of the triangle
    if((int)(bc[1]) != 0):

        bc_step = bc[0] / (float)(abs(bc[1]))

        for i in range((int)(c[1]-b[1])+1):

            b_bc_step = b[0] + ((float)(i) * bc_step)
            a_ca_step = a[0] + (float)(i + (b[1]-a[1])) * ca_step
        
            #Swap if true
            if (b_bc_step > a_ca_step):
                buf = b_bc_step
                b_bc_step = a_ca_step
                a_ca_step = buf

            for j in range((int)((a_ca_step - (b_bc_step - 1)) + 2)):
                v_int = (j + b_bc_step, i + b[1])
                
                #print("v_int: "+str(v_int)+" ab_step: " + str(ab_step)+" a_ac_step: " + str(a_ac_step) + " b_ab_step: " + str(b_ab_step))
                pixels[v_int] = color
Example #2
0
def half_line(corners):
    """Divides a quadrilateral in half.

    The argument `corners` is a list of four points (tuples of (x, y)),
    representing the corners of a quadrilateral.  The list may start
    on any of the four corners, but must go around the quadrilateral in
    clockwise or counter-clockwise order; skipping around is not allowed.

    The function returns a line (a list of two points) that joins the
    midpoints of two oposite sides of the quadrilateral defined by the
    four passed-in corners.  Arbitrarily, the bisected sides are the
    one joining corner 0 and corner 1, and the one joining corner 2 and
    corner 3."""

    c = center(corners)

    # `d` is the perspective vanishing point for the two sides that
    # we're *not* bisecting.
    d = intersection(line(corners[0], corners[3]),
                     line(corners[1], corners[2]))
    if not d:
        # No vanishing point found: the two sides must be parallel.
        # So just use one of the sides as the direction.  This adds
        # the vector from corner[3] to corner[0] to the center point we
        # computed above.
        d = (c[0] + corners[0][0] - corners[3][0],
             c[1] + corners[0][1] - corners[3][1])

    l = line(c, d)
    p1 = intersection(l, line(corners[0], corners[1]))
    p2 = intersection(l, line(corners[2], corners[3]))
    return (p1, p2)
Example #3
0
 def cast_ray(self, column, angle):
     maxlen = length = self.map.size * self.map.SCALE
     x, y = cos(angle), sin(angle)
     for l in range(length):
         _x = self.pose.x + self.SIZE / 2 + x * l / self.map.SCALE
         _y = self.pose.y + self.SIZE / 2 + y * l / self.map.SCALE
         if self.map.inspect(_x, _y) == Map.WALL:
             length = l
             break
     geometry.line(
         column * self.column_thickness,
         self.map.size * self.map.SCALE / 2 - 6000 / length / 2,
         6000 / length,
         pi / 2,
         darken((0.75, 0.22, 0.16, 1), length * 8 / maxlen),
         self.column_thickness
     )
Example #4
0
    def find_possible_intersections(self, points, detector):
        possible_intersections_straight = []
        all_points = []
        # for every 2 points in row
        for i in range(len(points) - 1):
            # solving for stright sensor
            A = points[i]
            B = points[i + 1]
            xA = np.around(A[0], 2)
            xB = np.around(B[0], 2)
            yA = np.around(A[1], 2)
            yB = np.around(B[1], 2)

            my_x = np.around(self.position.x, 2)
            my_y = np.around(self.position.y, 2)

            detector_x = np.around(detector.x, 2)
            detector_y = np.around(detector.y, 2)

            x_straight, y_straight = line_intersection(
                line(A, B), line((my_x, my_y), [detector_x, detector_y]))

            if x_straight == "lala":
                continue

            x_straight = np.around(x_straight, 2)
            y_straight = np.around(y_straight, 2)

            all_points.append((x_straight, y_straight))

            if (xA < x_straight < xB or xA > x_straight > xB or (xA == x_straight == xB and (yA <= y_straight <= yB or yA > y_straight > yB)))\
                    and (my_x < x_straight < detector_x or my_x > x_straight > detector_x or (my_x == x_straight == detector_x and (my_y < y_straight < detector_y or my_y >= y_straight >= detector_y))):

                possible_intersections_straight.append(
                    (x_straight, y_straight))
        if not possible_intersections_straight:
            pass  #(f"WARN all_points = {all_points}")
        return possible_intersections_straight
Example #5
0
def transform(
        wheel1: Point,
        wheel2: Point,
        tail: Point,
        scene_center: Point,
):
    """
    :return: (
        robot_position, # position against scene center;
        angle, # angle against scene center;
        distance, # distance to scene center;
        )
    """
    robot_center = midpoint(wheel1, wheel2)

    # finds the tail point's prime and its projection line - the main one
    tail_prime = two_points_90(wheel1, robot_center)
    intersection_line = line(wheel1, wheel2)
    if not pts_same_side(tail, tail_prime, intersection_line):
        tail_prime = two_points_90(wheel2, robot_center)
    main_projection_line = line(tail, tail_prime)

    # finds center line's prime
    center_line = line(scene_center, robot_center)
    side_line = line(tail, wheel1)
    side_intersection = intersection(center_line, side_line)
    if side_intersection:
        side_line_prime = line(tail_prime, wheel1)
    else:
        side_line = line(tail, wheel2)
        side_intersection = intersection(center_line, side_line)
        side_line_prime = line(tail_prime, wheel2)

    # noinspection PyTypeChecker
    side_intersection_projection_line = parallel_line(main_projection_line, side_intersection)
    side_intersection_prime = intersection(side_line_prime, side_intersection_projection_line)
    center_line_prime = line(robot_center, side_intersection_prime)

    # computes position, angle and distance
    center_line_projection = parallel_line(main_projection_line, scene_center)
    center_prime = intersection(center_line_projection, center_line_prime)
    dist = distance(center_prime, robot_center) / distance(robot_center, tail_prime)
    robot_position = robot_center - center_prime
    angle = math.degrees(normalize_angle(
        three_pts_angle(tail_prime, robot_center, center_prime) - math.pi))
    return Object(robot_position, angle, (dist * ROBOT_UNIT))
Example #6
0
def half_line(corners):
    # TODO what is this?
    c = center(corners)
    d = intersection(line(corners[0], corners[3]), line(corners[1], corners[2]))
    if d:
        l = line(c, d)
    else:
        l = line(c, (c[0] + corners[0][0] - corners[3][0], 
                     c[1] + corners[0][1] - corners[3][1]))
    p1 = intersection(l, line(corners[0], corners[1]))
    p2 = intersection(l, line(corners[2], corners[3]))
    return (p1, p2)
Example #7
0
def center(corners):
    """Given a list of four corner points, return the center of the square."""
    return intersection(line(corners[0], corners[2]), 
                        line(corners[1], corners[3]))
Example #8
0
def _lines(corners, n):
    # TODO what is this?
    if n == 0:
        x = half_line(corners)
        return (_lines([corners[0], x[0], x[1], corners[3]], 1) + [x] + 
                _lines([x[0], corners[1], corners[2], x[1]], 1))
    else:
        x = half_line(corners)
        c = intersection(line(x[0], corners[2]), line(corners[1], corners[3]))
        d = intersection(line(corners[0], corners[3]), line(corners[1], corners[2]))
        if d:
            l = (intersection(line(corners[0], corners[1]), line(c, d)),
                 intersection(line(corners[2], corners[3]), line(c, d)))
        else:
            lx = line(c, (c[0] + corners[0][0] - corners[3][0], 
                      c[1] + corners[0][1] - corners[3][1]))
            l = (intersection(line(corners[0], corners[1]), lx),
                 intersection(line(corners[2], corners[3]), lx))
        l2 = half_line([corners[0], l[0], l[1], corners[3]])
        if n == 1:
            return ([l, l2] + _lines([l[0], l2[0], l2[1], l[1]], 2)
                    + _lines([corners[0], l2[0], l2[1], corners[3]], 2)
                    + _lines([l[0], corners[1], corners[2], l[1]], 2))
        if n == 2:
            return [l, l2]
Example #9
0
def _lines(corners, n):
    # `mid_line` is a line that joins the midpoints of two oposite sides
    # of the quadrilateral defined by the four passed-in corners.
    mid_line = half_line(corners)

    # TODO what is this?
    if n == 0:
        # This recurses to look at the part of the quadrilateral on
        # *one* side of `mid_line`.  Returns all lines on that side,
        # not including `mid_line` but including the other edge.
        l0 = _lines([corners[0], mid_line[0], mid_line[1], corners[3]], 1)

        # This is just the mid-line.
        l1 = [mid_line]

        # This recurses to look at the part of the quadrilateral on the
        # *other* side of `mid_line`.  Returns all lines on that side,
        # not including `mid_line` but including the other edge.
        l2 = _lines([mid_line[0], corners[1], corners[2], mid_line[1]], 1)

        return (l0 + l1 + l2)

    else:
        c = intersection(line(mid_line[0], corners[2]),
                         line(corners[1], corners[3]))
        d = intersection(line(corners[0], corners[3]),
                         line(corners[1], corners[2]))
        if d:
            l = (intersection(line(corners[0], corners[1]), line(c, d)),
                 intersection(line(corners[2], corners[3]), line(c, d)))
        else:
            lx = line(c, (c[0] + corners[0][0] - corners[3][0],
                          c[1] + corners[0][1] - corners[3][1]))
            l = (intersection(line(corners[0], corners[1]), lx),
                 intersection(line(corners[2], corners[3]), lx))
        l2 = half_line([corners[0], l[0], l[1], corners[3]])
        if n == 1:
            return ([l, l2] + _lines([l[0], l2[0], l2[1], l[1]], 2) +
                    _lines([corners[0], l2[0], l2[1], corners[3]], 2) +
                    _lines([l[0], corners[1], corners[2], l[1]], 2))
        if n == 2:
            return [l, l2]
Example #10
0
import geometry as g
import physics as p
import pygame as pg
import pid
import rospy
import math as m
from geometry_msgs.msg import Pose, Twist
from sbsim.msg import goalmsg
import controller as c
from std_msgs.msg import Int32
from std_msgs.msg import Float64
from sbsim.msg import dribble
import random as rnd
import time

if __name__ == '__main__':
    a = g.point(1, 1)
    b = g.point(3, 3)
    c = g.point(1, 0)
    d = g.point(0, 1)
    l1 = g.line(type=1, d1=a, d2=b)
    l2 = g.line(type=1, d1=c, d2=d)
    X = g.linters(l1, l2)
    print X.x, X.y
    w = g.point(4, 0)
    z = g.point(0, 4)
    l3 = g.perpbisector(c, d)
    l4 = g.line(1, w, z)
    Y = g.linters(l3, l4)
    print Y.x, Y.y