Example #1
0
    def compose(self, point_a, point_b, point_type=None):
        r"""Compose two elements of SE(n).

        Parameters
        ----------
        point_1 : array-like, shape=[n_samples, {dim, [n + 1, n + 1]}]
        point_2 : array-like, shape=[n_samples, {dim, [n + 1, n + 1]}]
        point_type: str, {'vector', 'matrix'}, optional
            default: self.default_point_type

        Equation
        ---------
        (:math: `(R_1, t_1) \\cdot (R_2, t_2) = (R_1 R_2, R_1 t_2 + t_1)`)

        Returns
        -------
        composition : the composition of point_1 and point_2

        """
        rotations = self.rotations
        dim_rotations = rotations.dim

        point_a = self.regularize(point_a, point_type=point_type)
        point_b = self.regularize(point_b, point_type=point_type)

        if point_type == 'vector':
            n_points_a, _ = point_a.shape
            n_points_b, _ = point_b.shape

            if not (point_a.shape == point_b.shape or n_points_a == 1
                    or n_points_b == 1):
                raise ValueError()

            rot_vec_a = point_a[:, :dim_rotations]
            rot_mat_a = rotations.matrix_from_rotation_vector(rot_vec_a)

            rot_vec_b = point_b[:, :dim_rotations]
            rot_mat_b = rotations.matrix_from_rotation_vector(rot_vec_b)

            translation_a = point_a[:, dim_rotations:]
            translation_b = point_b[:, dim_rotations:]

            composition_rot_mat = gs.matmul(rot_mat_a, rot_mat_b)
            composition_rot_vec = rotations.rotation_vector_from_matrix(
                composition_rot_mat)

            composition_translation = gs.einsum(
                '...j,...kj->...k', translation_b, rot_mat_a) + translation_a

            composition = gs.concatenate(
                (composition_rot_vec, composition_translation), axis=-1)
            return self.regularize(composition, point_type=point_type)

        if point_type == 'matrix':
            return GeneralLinear.compose(point_a, point_b)

        raise ValueError('Invalid point_type, expected \'vector\' or '
                         '\'matrix\'.')
Example #2
0
    def log(self, point, base_point, **kwargs):
        r"""Compute the Riemannian logarithm of point w.r.t. base_point.

        Given :math:`P, P'` in Gr(n, k) the logarithm from :math:`P`
        to :math:`P` is induced by the infinitesimal rotation [Batzies2015]_:

        .. math::

            Y = \frac 1 2 \log \big((2 P' - 1)(2 P - 1)\big)

        The tangent vector :math:`X` at :math:`P`
        is then recovered by :math:`X = [Y, P]`.

        Parameters
        ----------
        point : array-like, shape=[..., n, n]
            Point.
        base_point : array-like, shape=[..., n, n]
            Base point.

        Returns
        -------
        tangent_vec : array-like, shape=[..., n, n]
            Riemannian logarithm, a tangent vector at `base_point`.

        References
        ----------
        .. [Batzies2015] Batzies, Hüper, Machado, Leite.
            "Geometric Mean and Geodesic Regression on Grassmannians"
            Linear Algebra and its Applications, 466, 83-101, 2015.
        """
        GLn = GeneralLinear(self.n)
        id_n = GLn.identity
        id_n, point, base_point = gs.convert_to_wider_dtype(
            [id_n, point, base_point])
        sym2 = 2 * point - id_n
        sym1 = 2 * base_point - id_n
        rot = GLn.compose(sym2, sym1)
        return Matrices.bracket(GLn.log(rot) / 2, base_point)
class TestGeneralLinear(geomstats.tests.TestCase):
    def setUp(self):
        gs.random.seed(1234)
        self.n = 3
        self.n_samples = 2
        self.group = GeneralLinear(n=self.n)

        warnings.simplefilter('ignore', category=ImportWarning)

    def test_belongs_shape(self):
        mat = gs.eye(3)
        result = self.group.belongs(mat)
        self.assertAllClose(gs.shape(result), ())

        mat = gs.ones((3, 3))
        result = self.group.belongs(mat)
        self.assertAllClose(gs.shape(result), ())

    def test_belongs(self):
        mat = gs.eye(3)
        result = self.group.belongs(mat)
        expected = True
        self.assertAllClose(result, expected)

        mat = gs.ones((3, 3))
        result = self.group.belongs(mat)
        expected = False
        self.assertAllClose(result, expected)

    def test_belongs_vectorization_shape(self):
        mats = gs.array([gs.eye(3), gs.ones((3, 3))])
        result = self.group.belongs(mats)
        self.assertAllClose(gs.shape(result), (2, ))

    def test_belongs_vectorization(self):
        mats = gs.array([gs.eye(3), gs.ones((3, 3))])
        result = self.group.belongs(mats)
        expected = gs.array([True, False])
        self.assertAllClose(result, expected)

    def test_random_and_belongs(self):
        point = self.group.random_uniform()
        result = self.group.belongs(point)
        expected = True
        self.assertAllClose(result, expected)

    def test_random_and_belongs_vectorization(self):
        n_samples = 4
        point = self.group.random_uniform(n_samples)
        result = self.group.belongs(point)
        expected = gs.array([True] * n_samples)
        self.assertAllClose(result, expected)

    def test_replace_values(self):
        points = gs.ones((3, 3, 3))
        new_points = gs.zeros((2, 3, 3))
        indcs = [True, False, True]
        update = self.group._replace_values(points, new_points, indcs)
        self.assertAllClose(
            update,
            gs.stack([gs.zeros((3, 3)),
                      gs.ones((3, 3)),
                      gs.zeros((3, 3))]))

    def test_compose(self):
        mat1 = gs.array([[1., 0.], [0., 2.]])
        mat2 = gs.array([[2., 0.], [0., 1.]])
        result = self.group.compose(mat1, mat2)
        expected = 2. * GeneralLinear(2).identity
        self.assertAllClose(result, expected)

    def test_inv(self):
        mat_a = gs.array([[1., 2., 3.], [4., 5., 6.], [7., 8., 10.]])
        imat_a = 1. / 3. * gs.array([[-2., -4., 3.], [-2., 11., -6.],
                                     [3., -6., 3.]])
        expected = imat_a
        result = self.group.inverse(mat_a)
        self.assertAllClose(result, expected)

    def test_inv_vectorized(self):
        mat_a = gs.array([[0., 1., 0.], [1., 0., 0.], [0., 0., 1.]])
        mat_b = -gs.eye(3, 3)
        result = self.group.inverse(gs.array([mat_a, mat_b]))
        expected = gs.array([mat_a, mat_b])
        self.assertAllClose(result, expected)

    @geomstats.tests.np_and_tf_only
    def test_log_and_exp(self):
        point = 5 * gs.eye(self.n)
        group_log = self.group.log(point)

        result = self.group.exp(group_log)
        expected = point
        self.assertAllClose(result, expected)

    def test_exp_vectorization(self):
        point = gs.array([[[2., 0., 0.], [0., 3., 0.], [0., 0., 4.]],
                          [[1., 0., 0.], [0., 5., 0.], [0., 0., 6.]]])

        expected = gs.array([[[7.38905609, 0., 0.], [0., 20.0855369, 0.],
                              [0., 0., 54.5981500]],
                             [[2.718281828, 0., 0.], [0., 148.413159, 0.],
                              [0., 0., 403.42879349]]])
        result = self.group.exp(point)
        self.assertAllClose(result, expected, rtol=1e-3)

    @geomstats.tests.np_and_tf_only
    def test_log_vectorization(self):
        point = gs.array([[[2., 0., 0.], [0., 3., 0.], [0., 0., 4.]],
                          [[1., 0., 0.], [0., 5., 0.], [0., 0., 6.]]])
        expected = gs.array([[[0.693147180, 0., 0.], [0., 1.09861228866, 0.],
                              [0., 0., 1.38629436]],
                             [[0., 0., 0.], [0., 1.609437912, 0.],
                              [0., 0., 1.79175946]]])
        result = self.group.log(point)
        self.assertAllClose(result, expected, atol=1e-4)

    @geomstats.tests.np_and_tf_only
    def test_orbit(self):
        point = gs.array([[gs.exp(4.), 0.], [0., gs.exp(2.)]])
        sqrt = gs.array([[gs.exp(2.), 0.], [0., gs.exp(1.)]])
        idty = GeneralLinear(2).identity

        path = GeneralLinear(2).orbit(point)
        time = gs.linspace(0., 1., 3)

        result = path(time)
        expected = gs.array([idty, sqrt, point])
        self.assertAllClose(result, expected)

    @geomstats.tests.np_and_tf_only
    def test_expm_and_logm_vectorization_symmetric(self):
        point = gs.array([[[2., 0., 0.], [0., 3., 0.], [0., 0., 4.]],
                          [[1., 0., 0.], [0., 5., 0.], [0., 0., 6.]]])
        result = self.group.exp(self.group.log(point))
        expected = point
        self.assertAllClose(result, expected)
class TestGeneralLinear(geomstats.tests.TestCase):
    def setUp(self):
        gs.random.seed(1234)
        self.n = 3
        self.n_samples = 2
        self.group = GeneralLinear(n=self.n)
        self.group_pos = GeneralLinear(self.n, positive_det=True)

        warnings.simplefilter('ignore', category=ImportWarning)

    def test_belongs_shape(self):
        mat = gs.eye(3)
        result = self.group.belongs(mat)
        self.assertAllClose(gs.shape(result), ())

        mat = gs.ones((3, 3))
        result = self.group.belongs(mat)
        self.assertAllClose(gs.shape(result), ())

    def test_belongs(self):
        mat = gs.eye(3)
        result = self.group.belongs(mat)
        expected = True
        self.assertAllClose(result, expected)

        mat = gs.ones((3, 3))
        result = self.group.belongs(mat)
        expected = False
        self.assertAllClose(result, expected)

        mat = gs.ones(3)
        result = self.group.belongs(mat)
        expected = False
        self.assertAllClose(result, expected)

    def test_belongs_vectorization_shape(self):
        mats = gs.array([gs.eye(3), gs.ones((3, 3))])
        result = self.group.belongs(mats)
        self.assertAllClose(gs.shape(result), (2, ))

    def test_belongs_vectorization(self):
        mats = gs.array([gs.eye(3), gs.ones((3, 3))])
        result = self.group.belongs(mats)
        expected = gs.array([True, False])
        self.assertAllClose(result, expected)

    def test_random_and_belongs(self):
        for group in [self.group, self.group_pos]:
            point = group.random_point()
            result = group.belongs(point)
            self.assertTrue(result)

    def test_random_and_belongs_vectorization(self):
        n_samples = 4
        expected = gs.array([True] * n_samples)
        for group in [self.group, self.group_pos]:
            point = group.random_point(n_samples)
            result = group.belongs(point)
            self.assertAllClose(result, expected)

    def test_compose(self):
        mat1 = gs.array([[1., 0.], [0., 2.]])
        mat2 = gs.array([[2., 0.], [0., 1.]])
        result = self.group.compose(mat1, mat2)
        expected = 2. * GeneralLinear(2).identity
        self.assertAllClose(result, expected)

    def test_inv(self):
        mat_a = gs.array([[1., 2., 3.], [4., 5., 6.], [7., 8., 10.]])
        imat_a = 1. / 3. * gs.array([[-2., -4., 3.], [-2., 11., -6.],
                                     [3., -6., 3.]])
        expected = imat_a
        result = self.group.inverse(mat_a)
        self.assertAllClose(result, expected)

    def test_inv_vectorized(self):
        mat_a = gs.array([[0., 1., 0.], [1., 0., 0.], [0., 0., 1.]])
        mat_b = -gs.eye(3, 3)
        result = self.group.inverse(gs.array([mat_a, mat_b]))
        expected = gs.array([mat_a, mat_b])
        self.assertAllClose(result, expected)

    @geomstats.tests.np_and_tf_only
    def test_log_and_exp(self):
        point = 5 * gs.eye(self.n)
        group_log = self.group.log(point)

        result = self.group.exp(group_log)
        expected = point
        self.assertAllClose(result, expected)

    def test_exp_vectorization(self):
        point = gs.array([[[2., 0., 0.], [0., 3., 0.], [0., 0., 4.]],
                          [[1., 0., 0.], [0., 5., 0.], [0., 0., 6.]]])

        expected = gs.array([[[7.38905609, 0., 0.], [0., 20.0855369, 0.],
                              [0., 0., 54.5981500]],
                             [[2.718281828, 0., 0.], [0., 148.413159, 0.],
                              [0., 0., 403.42879349]]])

        expected = gs.cast(expected, gs.float64)
        point = gs.cast(point, gs.float64)

        result = self.group.exp(point)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_and_tf_only
    def test_log_vectorization(self):
        point = gs.array([[[2., 0., 0.], [0., 3., 0.], [0., 0., 4.]],
                          [[1., 0., 0.], [0., 5., 0.], [0., 0., 6.]]])
        expected = gs.array([[[0.693147180, 0., 0.], [0., 1.09861228866, 0.],
                              [0., 0., 1.38629436]],
                             [[0., 0., 0.], [0., 1.609437912, 0.],
                              [0., 0., 1.79175946]]])
        result = self.group.log(point)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_and_tf_only
    def test_orbit(self):
        point = gs.array([[gs.exp(4.), 0.], [0., gs.exp(2.)]])
        sqrt = gs.array([[gs.exp(2.), 0.], [0., gs.exp(1.)]])
        identity = GeneralLinear(2).identity

        path = GeneralLinear(2).orbit(point)
        time = gs.linspace(0., 1., 3)

        result = path(time)
        expected = gs.array([identity, sqrt, point])
        self.assertAllClose(result, expected)

    @geomstats.tests.np_and_tf_only
    def test_orbit_vectorization(self):
        point = gs.array([[gs.exp(4.), 0.], [0., gs.exp(2.)]])
        sqrt = gs.array([[gs.exp(2.), 0.], [0., gs.exp(1.)]])
        identity = GeneralLinear(2).identity

        path = GeneralLinear(2).orbit(gs.stack([point] * 2), identity)
        time = gs.linspace(0., 1., 3)

        result = path(time)
        expected = gs.array([identity, sqrt, point])
        expected = gs.stack([expected] * 2)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_and_tf_only
    def test_expm_and_logm_vectorization_symmetric(self):
        point = gs.array([[[2., 0., 0.], [0., 3., 0.], [0., 0., 4.]],
                          [[1., 0., 0.], [0., 5., 0.], [0., 0., 6.]]])
        result = self.group.exp(self.group.log(point))
        expected = point
        self.assertAllClose(result, expected)

    def test_projection_and_belongs(self):
        shape = (self.n_samples, self.n, self.n)
        result = helper.test_projection_and_belongs(self.group, shape)
        for res in result:
            self.assertTrue(res)

    def test_projection_and_belongs_pos(self):
        shape = (self.n_samples, self.n, self.n)
        result = helper.test_projection_and_belongs(self.group_pos, shape)
        for res in result:
            self.assertTrue(res)
Example #5
0
class TestGeneralLinearMethods(geomstats.tests.TestCase):
    def setUp(self):
        gs.random.seed(1234)
        self.n = 3
        self.n_samples = 2
        self.group = GeneralLinear(n=self.n)
        # We generate invertible matrices using so3_group
        self.so3_group = SpecialOrthogonal(n=self.n)

        warnings.simplefilter('ignore', category=ImportWarning)

    @geomstats.tests.np_only
    def test_belongs(self):
        """
        A rotation matrix belongs to the matrix Lie group
        of invertible matrices.
        """
        rot_vec = gs.array([0.2, -0.1, 0.1])
        rot_mat = self.so3_group.matrix_from_rotation_vector(rot_vec)
        result = self.group.belongs(rot_mat)
        expected = gs.array([[True]])

        self.assertAllClose(result, expected)

    def test_compose(self):
        # 1. Composition by identity, on the right
        # Expect the original transformation
        rot_vec = gs.array([0.2, -0.1, 0.1])
        mat = self.so3_group.matrix_from_rotation_vector(rot_vec)

        result = self.group.compose(mat, self.group.identity)
        expected = mat
        expected = helper.to_matrix(mat)

        self.assertAllClose(result, expected)

        # 2. Composition by identity, on the left
        # Expect the original transformation
        rot_vec = gs.array([0.2, 0.1, -0.1])
        mat = self.so3_group.matrix_from_rotation_vector(rot_vec)

        result = self.group.compose(self.group.identity, mat)
        expected = mat

        self.assertAllClose(result, expected)

    def test_inverse(self):
        mat = gs.array([[1., 2., 3.], [4., 5., 6.], [7., 8., 10.]])
        result = self.group.inverse(mat)
        expected = 1. / 3. * gs.array([[-2., -4., 3.], [-2., 11., -6.],
                                       [3., -6., 3.]])
        expected = helper.to_matrix(expected)

        self.assertAllClose(result, expected)

    def test_compose_and_inverse(self):
        # 1. Compose transformation by its inverse on the right
        # Expect the group identity
        rot_vec = gs.array([0.2, 0.1, 0.1])
        mat = self.so3_group.matrix_from_rotation_vector(rot_vec)
        inv_mat = self.group.inverse(mat)

        result = self.group.compose(mat, inv_mat)
        expected = self.group.identity
        expected = helper.to_matrix(expected)

        self.assertAllClose(result, expected)

        # 2. Compose transformation by its inverse on the left
        # Expect the group identity
        rot_vec = gs.array([0.7, 0.1, 0.1])
        mat = self.so3_group.matrix_from_rotation_vector(rot_vec)
        inv_mat = self.group.inverse(mat)

        result = self.group.compose(inv_mat, mat)
        expected = self.group.identity
        expected = helper.to_matrix(expected)

        self.assertAllClose(result, expected)

    @geomstats.tests.np_and_tf_only
    def test_group_log_and_exp(self):
        point = 5 * gs.eye(self.n)

        group_log = self.group.log(point)
        result = self.group.exp(group_log)
        expected = point
        expected = helper.to_matrix(expected)

        self.assertAllClose(result, expected)

    @geomstats.tests.np_and_tf_only
    def test_group_exp_vectorization(self):
        point = gs.array([[[2., 0., 0.], [0., 3., 0.], [0., 0., 4.]],
                          [[1., 0., 0.], [0., 5., 0.], [0., 0., 6.]]])

        expected = gs.array([[[7.38905609, 0., 0.], [0., 20.0855369, 0.],
                              [0., 0., 54.5981500]],
                             [[2.718281828, 0., 0.], [0., 148.413159, 0.],
                              [0., 0., 403.42879349]]])

        result = self.group.exp(point)

        self.assertAllClose(result, expected, rtol=1e-3)

    @geomstats.tests.np_and_tf_only
    def test_group_log_vectorization(self):
        point = gs.array([[[2., 0., 0.], [0., 3., 0.], [0., 0., 4.]],
                          [[1., 0., 0.], [0., 5., 0.], [0., 0., 6.]]])

        expected = gs.array([[[0.693147180, 0., 0.], [0., 1.09861228866, 0.],
                              [0., 0., 1.38629436]],
                             [[0., 0., 0.], [0., 1.609437912, 0.],
                              [0., 0., 1.79175946]]])

        result = self.group.log(point)

        self.assertAllClose(result, expected, atol=1e-4)

    @geomstats.tests.np_and_tf_only
    def test_expm_and_logm_vectorization_symmetric(self):
        point = gs.array([[[2., 0., 0.], [0., 3., 0.], [0., 0., 4.]],
                          [[1., 0., 0.], [0., 5., 0.], [0., 0., 6.]]])
        result = self.group.exp(self.group.log(point))
        expected = point

        self.assertAllClose(result, expected)