Example #1
0
 def scaled_dist_test_data(self):
     space = Hyperboloid(3)
     point_a = space.from_coordinates(gs.array([1.0, 2.0, 3.0]),
                                      "intrinsic")
     point_b = space.from_coordinates(gs.array([4.0, 5.0, 6.0]),
                                      "intrinsic")
     smoke_data = [dict(dim=3, scale=2, point_a=point_a, point_b=point_b)]
     return self.generate_tests(smoke_data)
Example #2
0
 def product_distance_extrinsic_representation_test_data(self):
     point_a_intrinsic = gs.array([0.01, 0.0])
     point_b_intrinsic = gs.array([0.0, 0.0])
     hyperbolic_space = Hyperboloid(dim=2)
     point_a_extrinsic = hyperbolic_space.from_coordinates(
         point_a_intrinsic, "intrinsic")
     point_b_extrinsic = hyperbolic_space.from_coordinates(
         point_b_intrinsic, "intrinsic")
     smoke_data = [
         dict(
             n_disks=1,
             point_a_extrinsic=point_a_extrinsic,
             point_b_extrinsic=point_b_extrinsic,
         )
     ]
     return self.generate_tests(smoke_data)
Example #3
0
    def test_distance_ball_extrinsic_from_extr_4_dim(self):
        x_int = gs.array([10, 0.2, 3, 4])
        y_int = gs.array([1, 6, 2.0, 1])

        ball_manifold = PoincareBall(4)
        extrinsic_manifold = Hyperboloid(4)

        ball_metric = ball_manifold.metric
        extrinsic_metric = extrinsic_manifold.metric

        x_extr = extrinsic_manifold.from_coordinates(
            x_int, from_coords_type="intrinsic")
        y_extr = extrinsic_manifold.from_coordinates(
            y_int, from_coords_type="intrinsic")
        x_ball = extrinsic_manifold.to_coordinates(x_extr,
                                                   to_coords_type="ball")
        y_ball = extrinsic_manifold.to_coordinates(y_extr,
                                                   to_coords_type="ball")
        dst_ball = ball_metric.dist(x_ball, y_ball)
        dst_extr = extrinsic_metric.dist(x_extr, y_extr)

        self.assertAllClose(dst_ball, dst_extr)
Example #4
0
 def scaled_squared_norm_test_data(self):
     space = Hyperboloid(3)
     base_point = space.from_coordinates(gs.array([1.0, 1.0, 1.0]),
                                         "intrinsic")
     tangent_vec = space.to_tangent(gs.array([1.0, 2.0, 3.0, 4.0]),
                                    base_point)
     smoke_data = [
         dict(dim=3,
              scale=2,
              tangent_vec=tangent_vec,
              base_point=base_point)
     ]
     return self.generate_tests(smoke_data)
    def test_product_distance_extrinsic_representation(self):
        """Test the distance using the extrinsic representation."""
        coords_type = 'extrinsic'
        point_a_intrinsic = gs.array([0.01, 0.0])
        point_b_intrinsic = gs.array([0.0, 0.0])
        hyperbolic_space = Hyperboloid(dim=2)
        point_a = hyperbolic_space.from_coordinates(
            point_a_intrinsic, 'intrinsic')
        point_b = hyperbolic_space.from_coordinates(
            point_b_intrinsic, 'intrinsic')

        duplicate_point_a = gs.stack([point_a, point_a], axis=0)
        duplicate_point_b = gs.stack([point_b, point_b], axis=0)

        single_disk = PoincarePolydisk(n_disks=1, coords_type=coords_type)
        two_disks = PoincarePolydisk(n_disks=2, coords_type=coords_type)

        distance_single_disk = single_disk.metric.dist(point_a, point_b)
        distance_two_disks = two_disks.metric.dist(
            duplicate_point_a, duplicate_point_b)
        result = distance_two_disks
        expected = 3 ** 0.5 * distance_single_disk
        self.assertAllClose(result, expected)
    def test_distance_ball_extrinsic_from_extr_4_dim(self):
        x_int = gs.array([[10, 0.2, 3, 4]])
        y_int = gs.array([[1, 6, 2., 1]])

        ball_manifold = PoincareBall(4)
        extrinsic_manifold = Hyperboloid(4)

        ball_metric = ball_manifold.metric
        extrinsic_metric = extrinsic_manifold.metric

        x_extr = extrinsic_manifold.from_coordinates(
            x_int, from_coords_type='intrinsic')
        y_extr = extrinsic_manifold.from_coordinates(
            y_int, from_coords_type='intrinsic')
        x_ball = extrinsic_manifold.to_coordinates(
            x_extr, to_coords_type='ball')
        y_ball = extrinsic_manifold.to_coordinates(
            y_extr, to_coords_type='ball')
        dst_ball = ball_metric.dist(x_ball, y_ball)
        dst_extr = extrinsic_metric.dist(x_extr, y_extr)
        # TODO(nmiolane): Remove this when ball is properly vectorized
        dst_extr = gs.to_ndarray(dst_extr, to_ndim=2, axis=1)

        self.assertAllClose(dst_ball, dst_extr)
Example #7
0
 def scaled_inner_product_test_data(self):
     space = Hyperboloid(3)
     base_point = space.from_coordinates(gs.array([1.0, 1.0, 1.0]),
                                         "intrinsic")
     tangent_vec_a = space.to_tangent(gs.array([1.0, 2.0, 3.0, 4.0]),
                                      base_point)
     tangent_vec_b = space.to_tangent(gs.array([5.0, 6.0, 7.0, 8.0]),
                                      base_point)
     smoke_data = [
         dict(
             dim=3,
             scale=2,
             tangent_vec_a=tangent_vec_a,
             tangent_vec_b=tangent_vec_b,
             base_point=base_point,
         )
     ]
     return self.generate_tests(smoke_data)
Example #8
0
class TestHyperbolic(geomstats.tests.TestCase):
    def setup_method(self):
        gs.random.seed(1234)
        self.dimension = 3
        self.space = Hyperboloid(dim=self.dimension)
        self.metric = self.space.metric
        self.ball_manifold = PoincareBall(dim=2)
        self.n_samples = 10

    def test_belongs_intrinsic(self):
        self.space.coords_type = "intrinsic"
        point = gs.random.rand(self.n_samples, self.dimension)
        result = self.space.belongs(point)
        self.assertTrue(gs.all(result))

    def test_regularize_intrinsic(self):
        self.space.coords_type = "intrinsic"
        point = gs.random.rand(self.n_samples, self.dimension)
        regularized = self.space.regularize(point)
        self.space.coords_type = "extrinsic"
        result = self.space.belongs(regularized)
        self.assertTrue(gs.all(result))

    def test_regularize_zero_norm(self):
        point = gs.array([-1.0, 1.0, 0.0, 0.0])
        with pytest.raises(ValueError):
            self.space.regularize(point)

        with pytest.raises(NameError):
            self.space.extrinsic_to_intrinsic_coords(point)

    def test_random_uniform_and_belongs(self):
        point = self.space.random_point()
        result = self.space.belongs(point)
        expected = True
        self.assertAllClose(result, expected)

    def test_random_uniform(self):
        result = self.space.random_point()

        self.assertAllClose(gs.shape(result), (self.dimension + 1,))

    def test_projection_to_tangent_space(self):
        base_point = gs.array([1.0, 0.0, 0.0, 0.0])
        belongs = self.space.belongs(base_point)
        self.assertTrue(belongs)

        tangent_vec = self.space.to_tangent(
            vector=gs.array([1.0, 2.0, 1.0, 3.0]), base_point=base_point
        )
        result = self.metric.inner_product(tangent_vec, base_point)
        expected = 0.0

        self.assertAllClose(result, expected)

        result = self.space.to_tangent(
            vector=gs.array([1.0, 2.0, 1.0, 3.0]), base_point=base_point
        )
        expected = tangent_vec

        self.assertAllClose(result, expected)

    def test_intrinsic_and_extrinsic_coords(self):
        """
        Test that the composition of
        intrinsic_to_extrinsic_coords and
        extrinsic_to_intrinsic_coords
        gives the identity.
        """
        point_int = gs.ones(self.dimension)
        point_ext = self.space.intrinsic_to_extrinsic_coords(point_int)
        result = self.space.extrinsic_to_intrinsic_coords(point_ext)
        expected = point_int
        self.assertAllClose(result, expected)

        point_ext = gs.array([2.0, 1.0, 1.0, 1.0])
        point_int = self.space.to_coordinates(point_ext, "intrinsic")
        result = self.space.from_coordinates(point_int, "intrinsic")
        expected = point_ext

        self.assertAllClose(result, expected)

    def test_intrinsic_and_extrinsic_coords_vectorization(self):
        """
        Test that the composition of
        intrinsic_to_extrinsic_coords and
        extrinsic_to_intrinsic_coords
        gives the identity.
        """
        point_int = gs.array(
            [
                [0.1, 0.0, 0.0, 0.1, 0.0, 0.0],
                [0.1, 0.1, 0.1, 0.4, 0.1, 0.0],
                [0.1, 0.3, 0.0, 0.1, 0.0, 0.0],
                [-0.1, 0.1, -0.4, 0.1, -0.01, 0.0],
                [0.0, 0.0, 0.1, 0.1, -0.08, -0.1],
                [0.1, 0.1, 0.1, 0.1, 0.0, -0.5],
            ]
        )
        point_ext = self.space.from_coordinates(point_int, "intrinsic")
        result = self.space.to_coordinates(point_ext, "intrinsic")
        expected = point_int
        expected = helper.to_vector(expected)

        self.assertAllClose(result, expected)

        point_ext = gs.array(
            [
                [2.0, 1.0, 1.0, 1.0],
                [4.0, 1.0, 3.0, math.sqrt(5.0)],
                [3.0, 2.0, 0.0, 2.0],
            ]
        )
        point_int = self.space.to_coordinates(point_ext, "intrinsic")
        result = self.space.from_coordinates(point_int, "intrinsic")
        expected = point_ext
        expected = helper.to_vector(expected)

        self.assertAllClose(result, expected)

    def test_log_and_exp_general_case(self):
        """
        Test that the Riemannian exponential
        and the Riemannian logarithm are inverse.

        Expect their composition to give the identity function.
        """
        # Riemannian Log then Riemannian Exp
        # General case
        base_point = gs.array([4.0, 1.0, 3.0, math.sqrt(5.0)])
        point = gs.array([2.0, 1.0, 1.0, 1.0])

        log = self.metric.log(point=point, base_point=base_point)

        result = self.metric.exp(tangent_vec=log, base_point=base_point)
        expected = point
        self.assertAllClose(result, expected)

    def test_log_and_exp_general_case_general_dim(self):
        """
        Test that the Riemannian exponential
        and the Riemannian logarithm are inverse.

        Expect their composition to give the identity function.
        """
        # Riemannian Log then Riemannian Exp
        dim = 5
        n_samples = self.n_samples

        h5 = Hyperboloid(dim=dim)
        h5_metric = h5.metric

        base_point = h5.random_point()
        point = h5.random_point()
        point = gs.cast(point, gs.float64)
        base_point = gs.cast(base_point, gs.float64)
        one_log = h5_metric.log(point=point, base_point=base_point)

        result = h5_metric.exp(tangent_vec=one_log, base_point=base_point)
        expected = point
        self.assertAllClose(result, expected)

        # Test vectorization of log
        base_point = gs.stack([base_point] * n_samples, axis=0)
        point = gs.stack([point] * n_samples, axis=0)
        expected = gs.stack([one_log] * n_samples, axis=0)

        log = h5_metric.log(point=point, base_point=base_point)
        result = log

        self.assertAllClose(gs.shape(result), (n_samples, dim + 1))
        self.assertAllClose(result, expected)

        result = h5_metric.exp(tangent_vec=log, base_point=base_point)
        expected = point

        self.assertAllClose(gs.shape(result), (n_samples, dim + 1))
        self.assertAllClose(result, expected)

        # Test vectorization of exp
        tangent_vec = gs.stack([one_log] * n_samples, axis=0)
        exp = h5_metric.exp(tangent_vec=tangent_vec, base_point=base_point)
        result = exp

        expected = point
        self.assertAllClose(gs.shape(result), (n_samples, dim + 1))
        self.assertAllClose(result, expected)

    def test_exp_and_belongs(self):
        H2 = Hyperboloid(dim=2)
        METRIC = H2.metric

        base_point = gs.array([1.0, 0.0, 0.0])
        self.assertTrue(H2.belongs(base_point))

        tangent_vec = H2.to_tangent(
            vector=gs.array([1.0, 2.0, 1.0]), base_point=base_point
        )
        exp = METRIC.exp(tangent_vec=tangent_vec, base_point=base_point)
        self.assertTrue(H2.belongs(exp))

    def test_exp_small_vec(self):
        H2 = Hyperboloid(dim=2)
        METRIC = H2.metric

        base_point = H2.regularize(gs.array([1.0, 0.0, 0.0]))
        self.assertTrue(H2.belongs(base_point))

        tangent_vec = 1e-9 * H2.to_tangent(
            vector=gs.array([1.0, 2.0, 1.0]), base_point=base_point
        )
        exp = METRIC.exp(tangent_vec=tangent_vec, base_point=base_point)
        self.assertTrue(H2.belongs(exp))

    def test_exp_vectorization(self):
        n_samples = 3
        dim = self.dimension + 1

        one_vec = gs.array([2.0, 1.0, 1.0, 1.0])
        one_base_point = gs.array([4.0, 3.0, 1.0, math.sqrt(5)])
        n_vecs = gs.array(
            [
                [2.0, 1.0, 1.0, 1.0],
                [4.0, 1.0, 3.0, math.sqrt(5.0)],
                [3.0, 2.0, 0.0, 2.0],
            ]
        )
        n_base_points = gs.array(
            [
                [2.0, 0.0, 1.0, math.sqrt(2)],
                [5.0, math.sqrt(8), math.sqrt(8), math.sqrt(8)],
                [1.0, 0.0, 0.0, 0.0],
            ]
        )

        one_tangent_vec = self.space.to_tangent(one_vec, base_point=one_base_point)
        result = self.metric.exp(one_tangent_vec, one_base_point)
        self.assertAllClose(gs.shape(result), (dim,))

        n_tangent_vecs = self.space.to_tangent(n_vecs, base_point=one_base_point)
        result = self.metric.exp(n_tangent_vecs, one_base_point)
        self.assertAllClose(gs.shape(result), (n_samples, dim))

        expected = []

        for i in range(n_samples):
            expected.append(self.metric.exp(n_tangent_vecs[i], one_base_point))
        expected = gs.stack(expected, axis=0)
        expected = helper.to_vector(gs.array(expected))
        self.assertAllClose(result, expected, atol=1e-2)

        one_tangent_vec = self.space.to_tangent(one_vec, base_point=n_base_points)
        result = self.metric.exp(one_tangent_vec, n_base_points)
        self.assertAllClose(gs.shape(result), (n_samples, dim))

        expected = []
        for i in range(n_samples):
            expected.append(self.metric.exp(one_tangent_vec[i], n_base_points[i]))
        expected = gs.stack(expected, axis=0)
        expected = helper.to_vector(gs.array(expected))
        self.assertAllClose(result, expected)

        n_tangent_vecs = self.space.to_tangent(n_vecs, base_point=n_base_points)
        result = self.metric.exp(n_tangent_vecs, n_base_points)
        self.assertAllClose(gs.shape(result), (n_samples, dim))

        expected = []
        for i in range(n_samples):
            expected.append(self.metric.exp(n_tangent_vecs[i], n_base_points[i]))
        expected = gs.stack(expected, axis=0)
        expected = helper.to_vector(gs.array(expected))
        self.assertAllClose(result, expected)

    def test_log_vectorization(self):
        n_samples = 3
        dim = self.dimension + 1

        one_point = gs.array([2.0, 1.0, 1.0, 1.0])
        one_base_point = gs.array([4.0, 3.0, 1.0, math.sqrt(5)])
        n_points = gs.array(
            [[2.0, 1.0, 1.0, 1.0], [4.0, 1.0, 3.0, math.sqrt(5)], [3.0, 2.0, 0.0, 2.0]]
        )
        n_base_points = gs.array(
            [
                [2.0, 0.0, 1.0, math.sqrt(2)],
                [5.0, math.sqrt(8), math.sqrt(8), math.sqrt(8)],
                [1.0, 0.0, 0.0, 0.0],
            ]
        )

        result = self.metric.log(one_point, one_base_point)
        self.assertAllClose(gs.shape(result), (dim,))

        result = self.metric.log(n_points, one_base_point)
        self.assertAllClose(gs.shape(result), (n_samples, dim))

        result = self.metric.log(one_point, n_base_points)
        self.assertAllClose(gs.shape(result), (n_samples, dim))

        result = self.metric.log(n_points, n_base_points)
        self.assertAllClose(gs.shape(result), (n_samples, dim))

    def test_inner_product(self):
        """
        Test that the inner product between two tangent vectors
        is the Minkowski inner product.
        """
        minkowski_space = Minkowski(self.dimension + 1)
        base_point = gs.array([1.16563816, 0.36381045, -0.47000603, 0.07381469])

        tangent_vec_a = self.space.to_tangent(
            vector=gs.array([10.0, 200.0, 1.0, 1.0]), base_point=base_point
        )

        tangent_vec_b = self.space.to_tangent(
            vector=gs.array([11.0, 20.0, -21.0, 0.0]), base_point=base_point
        )

        result = self.metric.inner_product(tangent_vec_a, tangent_vec_b, base_point)

        expected = minkowski_space.metric.inner_product(
            tangent_vec_a, tangent_vec_b, base_point
        )

        self.assertAllClose(result, expected)

    def test_squared_norm_and_squared_dist(self):
        """
        Test that the squared distance between two points is
        the squared norm of their logarithm.
        """
        point_a = gs.array([2.0, 1.0, 1.0, 1.0])
        point_b = gs.array([4.0, 1.0, 3.0, math.sqrt(5)])
        log = self.metric.log(point=point_a, base_point=point_b)
        result = self.metric.squared_norm(vector=log)
        expected = self.metric.squared_dist(point_a, point_b)

        self.assertAllClose(result, expected)

    def test_norm_and_dist(self):
        """
        Test that the distance between two points is
        the norm of their logarithm.
        """
        point_a = gs.array([2.0, 1.0, 1.0, 1.0])
        point_b = gs.array([4.0, 1.0, 3.0, math.sqrt(5)])
        log = self.metric.log(point=point_a, base_point=point_b)
        result = self.metric.norm(vector=log)
        expected = self.metric.dist(point_a, point_b)

        self.assertAllClose(result, expected)

    def test_log_and_exp_edge_case(self):
        """
        Test that the Riemannian exponential
        and the Riemannian logarithm are inverse.

        Expect their composition to give the identity function.
        """
        # Riemannian Log then Riemannian Exp
        # Edge case: two very close points, base_point_2 and point_2,
        # form an angle < epsilon
        base_point_intrinsic = gs.array([1.0, 2.0, 3.0])
        base_point = self.space.from_coordinates(base_point_intrinsic, "intrinsic")
        point_intrinsic = base_point_intrinsic + 1e-12 * gs.array([-1.0, -2.0, 1.0])
        point = self.space.from_coordinates(point_intrinsic, "intrinsic")

        log = self.metric.log(point=point, base_point=base_point)
        result = self.metric.exp(tangent_vec=log, base_point=base_point)
        expected = point

        self.assertAllClose(result, expected)

    def test_exp_and_log_and_projection_to_tangent_space_general_case(self):
        """
        Test that the Riemannian exponential
        and the Riemannian logarithm are inverse.

        Expect their composition to give the identity function.
        """
        # Riemannian Exp then Riemannian Log
        # General case
        base_point = gs.array([4.0, 1.0, 3.0, math.sqrt(5)])
        vector = gs.array([2.0, 1.0, 1.0, 1.0])
        vector = self.space.to_tangent(vector=vector, base_point=base_point)
        exp = self.metric.exp(tangent_vec=vector, base_point=base_point)
        result = self.metric.log(point=exp, base_point=base_point)

        expected = vector
        self.assertAllClose(result, expected)

    def test_dist(self):
        # Distance between a point and itself is 0.
        point_a = gs.array([4.0, 1.0, 3.0, math.sqrt(5)])
        point_b = point_a
        result = self.metric.dist(point_a, point_b)
        expected = 0
        self.assertAllClose(result, expected)

    def test_exp_and_dist_and_projection_to_tangent_space(self):
        base_point = gs.array([4.0, 1.0, 3.0, math.sqrt(5)])
        vector = gs.array([0.001, 0.0, -0.00001, -0.00003])
        tangent_vec = self.space.to_tangent(vector=vector, base_point=base_point)
        exp = self.metric.exp(tangent_vec=tangent_vec, base_point=base_point)

        result = self.metric.dist(base_point, exp)
        sq_norm = self.metric.embedding_metric.squared_norm(tangent_vec)
        expected = sq_norm
        self.assertAllClose(result, expected, atol=1e-2)

    def test_geodesic_and_belongs(self):
        initial_point = gs.array([4.0, 1.0, 3.0, math.sqrt(5)])
        n_geodesic_points = 100
        vector = gs.array([1.0, 0.0, 0.0, 0.0])

        initial_tangent_vec = self.space.to_tangent(
            vector=vector, base_point=initial_point
        )
        geodesic = self.metric.geodesic(
            initial_point=initial_point, initial_tangent_vec=initial_tangent_vec
        )

        t = gs.linspace(start=0.0, stop=1.0, num=n_geodesic_points)
        points = geodesic(t)
        result = gs.all(self.space.belongs(points))
        self.assertTrue(result)

    def test_geodesic_and_belongs_large_initial_velocity(self):
        initial_point = gs.array([4.0, 1.0, 3.0, math.sqrt(5)])
        n_geodesic_points = 100
        vector = gs.array([2.0, 0.0, 0.0, 0.0])

        initial_tangent_vec = self.space.to_tangent(
            vector=vector, base_point=initial_point
        )
        geodesic = self.metric.geodesic(
            initial_point=initial_point, initial_tangent_vec=initial_tangent_vec
        )

        t = gs.linspace(start=0.0, stop=1.0, num=n_geodesic_points)
        points = geodesic(t)
        result = gs.all(self.space.belongs(points, atol=gs.atol * 1e4))
        self.assertTrue(result)

    def test_exp_and_log_and_projection_to_tangent_space_edge_case(self):
        """
        Test that the Riemannian exponential and
        the Riemannian logarithm are inverse.

        Expect their composition to give the identity function.
        """
        # Riemannian Exp then Riemannian Log
        # Edge case: tangent vector has norm < epsilon
        base_point = gs.array([2.0, 1.0, 1.0, 1.0])
        vector = 1e-10 * gs.array([0.06, -51.0, 6.0, 5.0])

        exp = self.metric.exp(tangent_vec=vector, base_point=base_point)
        result = self.metric.log(point=exp, base_point=base_point)
        expected = self.space.to_tangent(vector=vector, base_point=base_point)

        self.assertAllClose(result, expected)

    def test_scaled_inner_product(self):
        base_point_intrinsic = gs.array([1.0, 1.0, 1.0])
        base_point = self.space.from_coordinates(base_point_intrinsic, "intrinsic")
        tangent_vec_a = gs.array([1.0, 2.0, 3.0, 4.0])
        tangent_vec_b = gs.array([5.0, 6.0, 7.0, 8.0])
        tangent_vec_a = self.space.to_tangent(tangent_vec_a, base_point)
        tangent_vec_b = self.space.to_tangent(tangent_vec_b, base_point)
        scale = 2
        default_space = Hyperboloid(dim=self.dimension)
        scaled_space = Hyperboloid(dim=self.dimension, scale=2)
        inner_product_default_metric = default_space.metric.inner_product(
            tangent_vec_a, tangent_vec_b, base_point
        )
        inner_product_scaled_metric = scaled_space.metric.inner_product(
            tangent_vec_a, tangent_vec_b, base_point
        )
        result = inner_product_scaled_metric
        expected = scale**2 * inner_product_default_metric
        self.assertAllClose(result, expected)

    def test_scaled_squared_norm(self):
        base_point_intrinsic = gs.array([1.0, 1.0, 1.0])
        base_point = self.space.from_coordinates(base_point_intrinsic, "intrinsic")
        tangent_vec = gs.array([1.0, 2.0, 3.0, 4.0])
        tangent_vec = self.space.to_tangent(tangent_vec, base_point)
        scale = 2
        default_space = Hyperboloid(dim=self.dimension)
        scaled_space = Hyperboloid(dim=self.dimension, scale=2)
        squared_norm_default_metric = default_space.metric.squared_norm(
            tangent_vec, base_point
        )
        squared_norm_scaled_metric = scaled_space.metric.squared_norm(
            tangent_vec, base_point
        )
        result = squared_norm_scaled_metric
        expected = scale**2 * squared_norm_default_metric
        self.assertAllClose(result, expected)

    def test_scaled_distance(self):
        point_a_intrinsic = gs.array([1.0, 2.0, 3.0])
        point_b_intrinsic = gs.array([4.0, 5.0, 6.0])
        point_a = self.space.from_coordinates(point_a_intrinsic, "intrinsic")
        point_b = self.space.from_coordinates(point_b_intrinsic, "intrinsic")
        scale = 2
        scaled_space = Hyperboloid(dim=self.dimension, scale=2)
        distance_default_metric = self.space.metric.dist(point_a, point_b)
        distance_scaled_metric = scaled_space.metric.dist(point_a, point_b)
        result = distance_scaled_metric
        expected = scale * distance_default_metric
        self.assertAllClose(result, expected)

    def test_is_tangent(self):
        base_point = gs.array([4.0, 1.0, 3.0, math.sqrt(5.0)])
        point = gs.array([2.0, 1.0, 1.0, 1.0])

        log = self.metric.log(point=point, base_point=base_point)
        result = self.space.is_tangent(log, base_point)
        self.assertTrue(result)

    @geomstats.tests.np_autograd_and_tf_only
    def test_parallel_transport_vectorization(self):
        space = self.space
        shape = (4, space.dim + 1)
        metric = space.metric

        results = helper.test_parallel_transport(space, metric, shape)
        for res in results:
            self.assertTrue(res)

    def test_projection_and_belongs(self):
        shape = (self.n_samples, self.dimension + 1)
        result = helper.test_projection_and_belongs(
            self.space, shape, atol=gs.atol * 100
        )
        for res in result:
            self.assertTrue(res)

        point = gs.array([0.0, 1.0, 0.0, 0.0])
        projected = self.space.projection(point)
        result = self.space.belongs(projected)
        self.assertTrue(result)
Example #9
0
class TestHyperbolicCoords(geomstats.tests.TestCase):
    def setUp(self):
        gs.random.seed(1234)
        self.dimension = 2

        self.extrinsic_manifold = Hyperboloid(dim=self.dimension)
        self.extrinsic_metric = self.extrinsic_manifold.metric

        self.ball_manifold = PoincareBall(dim=self.dimension)
        self.ball_metric = self.ball_manifold.metric

        self.intrinsic_manifold = Hyperboloid(dim=self.dimension,
                                              coords_type="intrinsic")
        self.intrinsic_metric = self.intrinsic_manifold.metric

        self.n_samples = 10

    def test_extrinsic_ball_extrinsic(self):
        x_in = gs.array([0.5, 7])
        x = self.intrinsic_manifold.to_coordinates(x_in,
                                                   to_coords_type="extrinsic")
        x_b = self.extrinsic_manifold.to_coordinates(x, to_coords_type="ball")
        x2 = self.ball_manifold.to_coordinates(x_b, to_coords_type="extrinsic")
        self.assertAllClose(x, x2)

    def test_belongs_intrinsic(self):
        x_in = gs.array([0.5, 7])
        is_in = self.intrinsic_manifold.belongs(x_in)
        self.assertTrue(is_in)

    def test_belongs_extrinsic(self):
        x_true = self.intrinsic_manifold.to_coordinates(
            gs.array([0.5, 7]), "extrinsic")
        x_false = gs.array([0.5, 7, 3.0])
        is_in = self.extrinsic_manifold.belongs(x_true)
        self.assertTrue(is_in)
        is_out = self.extrinsic_manifold.belongs(x_false)
        self.assertFalse(is_out)

    def test_belongs_ball(self):
        x_true = gs.array([0.5, 0.5])
        x_false = gs.array([0.8, 0.8])
        is_in = self.ball_manifold.belongs(x_true)
        self.assertTrue(is_in)
        is_out = self.ball_manifold.belongs(x_false)
        self.assertFalse(is_out)

    def test_extrinsic_half_plane_extrinsic(self):
        x_in = gs.array([0.5, 7], dtype=gs.float64)
        x = self.intrinsic_manifold.to_coordinates(x_in,
                                                   to_coords_type="extrinsic")
        x_up = self.extrinsic_manifold.to_coordinates(
            x, to_coords_type="half-space")

        x2 = Hyperbolic.change_coordinates_system(x_up, "half-space",
                                                  "extrinsic")
        self.assertAllClose(x, x2)

    def test_intrinsic_extrinsic_intrinsic(self):
        x_intr = gs.array([0.5, 7])
        x_extr = self.intrinsic_manifold.to_coordinates(
            x_intr, to_coords_type="extrinsic")
        x_intr2 = self.extrinsic_manifold.to_coordinates(
            x_extr, to_coords_type="intrinsic")
        self.assertAllClose(x_intr, x_intr2)

    def test_ball_extrinsic_ball(self):
        x = gs.array([0.5, 0.2])
        x_e = self.ball_manifold.to_coordinates(x, to_coords_type="extrinsic")
        x2 = self.extrinsic_manifold.to_coordinates(x_e, to_coords_type="ball")
        self.assertAllClose(x, x2)

    def test_distance_ball_extrinsic_from_ball(self):
        x_ball = gs.array([0.7, 0.2])
        y_ball = gs.array([0.2, 0.2])
        x_extr = self.ball_manifold.to_coordinates(x_ball,
                                                   to_coords_type="extrinsic")
        y_extr = self.ball_manifold.to_coordinates(y_ball,
                                                   to_coords_type="extrinsic")
        dst_ball = self.ball_metric.dist(x_ball, y_ball)
        dst_extr = self.extrinsic_metric.dist(x_extr, y_extr)

        self.assertAllClose(dst_ball, dst_extr)

    def test_distance_ball_extrinsic_from_extr(self):
        x_int = gs.array([10, 0.2])
        y_int = gs.array([1, 6.0])
        x_extr = self.intrinsic_manifold.to_coordinates(
            x_int, to_coords_type="extrinsic")
        y_extr = self.intrinsic_manifold.to_coordinates(
            y_int, to_coords_type="extrinsic")
        x_ball = self.extrinsic_manifold.to_coordinates(x_extr,
                                                        to_coords_type="ball")
        y_ball = self.extrinsic_manifold.to_coordinates(y_extr,
                                                        to_coords_type="ball")
        dst_ball = self.ball_metric.dist(x_ball, y_ball)
        dst_extr = self.extrinsic_metric.dist(x_extr, y_extr)

        self.assertAllClose(dst_ball, dst_extr)

    def test_distance_ball_extrinsic_from_extr_4_dim(self):
        x_int = gs.array([10, 0.2, 3, 4])
        y_int = gs.array([1, 6, 2.0, 1])

        ball_manifold = PoincareBall(4)
        extrinsic_manifold = Hyperboloid(4)

        ball_metric = ball_manifold.metric
        extrinsic_metric = extrinsic_manifold.metric

        x_extr = extrinsic_manifold.from_coordinates(
            x_int, from_coords_type="intrinsic")
        y_extr = extrinsic_manifold.from_coordinates(
            y_int, from_coords_type="intrinsic")
        x_ball = extrinsic_manifold.to_coordinates(x_extr,
                                                   to_coords_type="ball")
        y_ball = extrinsic_manifold.to_coordinates(y_extr,
                                                   to_coords_type="ball")
        dst_ball = ball_metric.dist(x_ball, y_ball)
        dst_extr = extrinsic_metric.dist(x_extr, y_extr)

        self.assertAllClose(dst_ball, dst_extr)

    def test_log_exp_ball_extrinsic_from_extr(self):
        """Compare log exp in different parameterizations."""
        x_int = gs.array([4.0, 0.2])
        y_int = gs.array([3.0, 3])
        x_extr = self.intrinsic_manifold.to_coordinates(
            x_int, to_coords_type="extrinsic")
        y_extr = self.intrinsic_manifold.to_coordinates(
            y_int, to_coords_type="extrinsic")
        x_ball = self.extrinsic_manifold.to_coordinates(x_extr,
                                                        to_coords_type="ball")
        y_ball = self.extrinsic_manifold.to_coordinates(y_extr,
                                                        to_coords_type="ball")

        x_ball_log_exp = self.ball_metric.exp(
            self.ball_metric.log(y_ball, x_ball), x_ball)

        x_extr_a = self.extrinsic_metric.exp(
            self.extrinsic_metric.log(y_extr, x_extr), x_extr)
        x_extr_b = self.extrinsic_manifold.from_coordinates(
            x_ball_log_exp, from_coords_type="ball")
        self.assertAllClose(x_extr_a, x_extr_b, atol=3e-4)

    def test_log_exp_ball(self):
        x = gs.array([0.1, 0.2])
        y = gs.array([0.2, 0.5])

        log = self.ball_metric.log(point=y, base_point=x)
        exp = self.ball_metric.exp(tangent_vec=log, base_point=x)
        self.assertAllClose(exp, y)

    def test_log_exp_ball_vectorization(self):
        x = gs.array([0.1, 0.2])
        y = gs.array([[0.2, 0.5], [0.1, 0.7]])

        log = self.ball_metric.log(y, x)
        exp = self.ball_metric.exp(log, x)
        self.assertAllClose(exp, y)

    def test_log_exp_ball_null_tangent(self):
        x = gs.array([[0.1, 0.2], [0.1, 0.2]])
        tangent_vec = gs.array([[0.0, 0.0], [0.0, 0.0]])
        exp = self.ball_metric.exp(tangent_vec, x)
        self.assertAllClose(exp, x)
class TestPoincareHalfSpace(geomstats.tests.TestCase):
    def setup_method(self):
        self.manifold = PoincareHalfSpace(2)
        self.metric = self.manifold.metric

        self.hyperboloid_manifold = Hyperboloid(2)
        self.hyperboloid_metric = self.hyperboloid_manifold.metric

    def test_belongs(self):
        point = gs.array([1.5, 2.3])
        result = self.manifold.belongs(point)
        self.assertTrue(result)

        points = gs.array([[1.5, 2.0], [2.5, -0.3]])
        result = self.manifold.belongs(points)
        expected = gs.array([True, False])
        self.assertAllClose(result, expected)

    def test_inner_product_vectorization(self):
        tangent_vec = gs.array([[1.0, 2.0], [3.0, 4.0]])
        base_point = gs.array([[0.0, 1.0], [0.0, 5.0]])
        result = self.metric.inner_product(tangent_vec, tangent_vec, base_point)
        expected = gs.array([5.0, 1.0])
        self.assertAllClose(result, expected)

    def test_half_space_to_ball_coordinates(self):
        point_half_space = gs.array([0.0, 1.0])
        result = self.manifold.half_space_to_ball_coordinates(point_half_space)
        expected = gs.zeros(2)
        self.assertAllClose(result, expected)

    def test_half_space_to_ball_coordinates_vectorization(self):
        point_half_space = gs.array([[0.0, 1.0], [0.0, 2.0]])
        point_ball = self.manifold.half_space_to_ball_coordinates(point_half_space)
        expected = gs.array([[0.0, 0.0], [0.0, 1.0 / 3.0]])
        self.assertAllClose(point_ball, expected)

    def test_ball_to_half_space_coordinates(self):
        point_ball = gs.array([-0.3, 0.7])
        point_half_space = self.manifold.ball_to_half_space_coordinates(point_ball)
        point_ext = self.hyperboloid_manifold.from_coordinates(point_ball, "ball")
        point_half_space_expected = self.hyperboloid_manifold.to_coordinates(
            point_ext, "half-space"
        )
        self.assertAllClose(point_half_space, point_half_space_expected)

    def test_coordinates(self):
        point_half_space = gs.array([1.5, 2.3])
        point_ball = self.manifold.half_space_to_ball_coordinates(point_half_space)
        result = self.manifold.ball_to_half_space_coordinates(point_ball)
        self.assertAllClose(result, point_half_space)

    def test_exp_and_coordinates_tangent(self):
        base_point = gs.array([1.5, 2.3])
        tangent_vec = gs.array([0.0, 1.0])
        end_point = self.metric.exp(tangent_vec, base_point)
        self.assertAllClose(base_point[0], end_point[0])

    def test_ball_half_plane_are_inverse(self):
        base_point = gs.array([1.5, 2.3])
        base_point_ball = self.manifold.half_space_to_ball_coordinates(base_point)
        result = self.manifold.ball_to_half_space_coordinates(base_point_ball)
        self.assertAllClose(result, base_point)

    def test_ball_half_plane_tangent_are_inverse(self):
        base_point = gs.array([1.5, 2.3])
        tangent_vec = gs.array([0.5, 1.0])
        tangent_vec_ball = self.manifold.half_space_to_ball_tangent(
            tangent_vec, base_point
        )
        base_point_ball = self.manifold.half_space_to_ball_coordinates(base_point)
        result = self.manifold.ball_to_half_space_tangent(
            tangent_vec_ball, base_point_ball
        )
        self.assertAllClose(result, tangent_vec)

    @geomstats.tests.np_and_autograd_only
    def test_exp(self):
        point = gs.array([1.0, 1.0])
        tangent_vec = gs.array([2.0, 1.0])
        end_point = self.metric.exp(tangent_vec, point)

        circle_center = point[0] + point[1] * tangent_vec[1] / tangent_vec[0]
        circle_radius = gs.sqrt((circle_center - point[0]) ** 2 + point[1] ** 2)

        moebius_d = 1
        moebius_c = 1 / (2 * circle_radius)
        moebius_b = circle_center - circle_radius
        moebius_a = (circle_center + circle_radius) * moebius_c

        point_complex = point[0] + 1j * point[1]
        tangent_vec_complex = tangent_vec[0] + 1j * tangent_vec[1]

        point_moebius = (
            1j
            * (moebius_d * point_complex - moebius_b)
            / (moebius_c * point_complex - moebius_a)
        )
        tangent_vec_moebius = (
            -1j
            * tangent_vec_complex
            * (1j * moebius_c * point_moebius + moebius_d) ** 2
        )

        end_point_moebius = point_moebius * gs.exp(tangent_vec_moebius / point_moebius)
        end_point_complex = (moebius_a * 1j * end_point_moebius + moebius_b) / (
            moebius_c * 1j * end_point_moebius + moebius_d
        )
        end_point_expected = gs.hstack(
            [np.real(end_point_complex), np.imag(end_point_complex)]
        )

        self.assertAllClose(end_point, end_point_expected)

    @geomstats.tests.np_and_autograd_only
    def test_exp_vectorization(self):
        point = gs.array([[1.0, 1.0], [1.0, 1.0]])
        tangent_vec = gs.array([[2.0, 1.0], [2.0, 1.0]])
        result = self.metric.exp(tangent_vec, point)

        point = point[0]
        tangent_vec = tangent_vec[0]
        circle_center = point[0] + point[1] * tangent_vec[1] / tangent_vec[0]
        circle_radius = gs.sqrt((circle_center - point[0]) ** 2 + point[1] ** 2)

        moebius_d = 1
        moebius_c = 1 / (2 * circle_radius)
        moebius_b = circle_center - circle_radius
        moebius_a = (circle_center + circle_radius) * moebius_c

        point_complex = point[0] + 1j * point[1]
        tangent_vec_complex = tangent_vec[0] + 1j * tangent_vec[1]

        point_moebius = (
            1j
            * (moebius_d * point_complex - moebius_b)
            / (moebius_c * point_complex - moebius_a)
        )
        tangent_vec_moebius = (
            -1j
            * tangent_vec_complex
            * (1j * moebius_c * point_moebius + moebius_d) ** 2
        )

        end_point_moebius = point_moebius * gs.exp(tangent_vec_moebius / point_moebius)
        end_point_complex = (moebius_a * 1j * end_point_moebius + moebius_b) / (
            moebius_c * 1j * end_point_moebius + moebius_d
        )
        end_point_expected = gs.hstack(
            [np.real(end_point_complex), np.imag(end_point_complex)]
        )
        expected = gs.stack([end_point_expected, end_point_expected])
        self.assertAllClose(result, expected)

    def test_exp_and_log_are_inverse(self):
        points = gs.array([[1.0, 1.0], [1.0, 1.0]])
        tangent_vecs = gs.array([[2.0, 1.0], [2.0, 1.0]])
        end_points = self.metric.exp(tangent_vecs, points)
        result = self.metric.log(end_points, points)
        expected = tangent_vecs
        self.assertAllClose(result, expected)

    def test_projection(self):
        point = gs.array([[1.0, -1.0], [0.0, 1.0]])
        projected = self.manifold.projection(point)
        result = self.manifold.belongs(projected)
        self.assertTrue(gs.all(result))

        projected = self.manifold.projection(point[0])
        result = self.manifold.belongs(projected)
        self.assertTrue(result)
Example #11
0
class TestHyperbolicMethods(geomstats.tests.TestCase):
    def setUp(self):
        gs.random.seed(1234)
        self.dimension = 3
        self.space = Hyperboloid(dim=self.dimension)
        self.metric = self.space.metric
        self.ball_manifold = PoincareBall(dim=2)
        self.n_samples = 10

    def test_random_uniform_and_belongs(self):
        point = self.space.random_uniform()
        result = self.space.belongs(point)
        expected = True

        self.assertAllClose(result, expected)

    def test_random_uniform(self):
        result = self.space.random_uniform()

        self.assertAllClose(gs.shape(result), (self.dimension + 1,))

    def test_projection_to_tangent_space(self):
        base_point = gs.array([1., 0., 0., 0.])
        self.assertTrue(self.space.belongs(base_point))

        tangent_vec = self.space.projection_to_tangent_space(
            vector=gs.array([1., 2., 1., 3.]),
            base_point=base_point)

        result = self.metric.inner_product(tangent_vec, base_point)
        expected = 0.

        self.assertAllClose(result, expected)

        result = self.space.projection_to_tangent_space(
            vector=gs.array([1., 2., 1., 3.]),
            base_point=base_point)
        expected = tangent_vec

        self.assertAllClose(result, expected)

    def test_intrinsic_and_extrinsic_coords(self):
        """
        Test that the composition of
        intrinsic_to_extrinsic_coords and
        extrinsic_to_intrinsic_coords
        gives the identity.
        """
        point_int = gs.ones(self.dimension)
        point_ext = self.space.from_coordinates(point_int, 'intrinsic')
        result = self.space.to_coordinates(point_ext, 'intrinsic')
        expected = point_int
        expected = helper.to_vector(expected)
        self.assertAllClose(result, expected)

        point_ext = gs.array([2.0, 1.0, 1.0, 1.0])
        point_int = self.space.to_coordinates(point_ext, 'intrinsic')
        result = self.space.from_coordinates(point_int, 'intrinsic')
        expected = point_ext
        expected = helper.to_vector(expected)

        self.assertAllClose(result, expected)

    def test_intrinsic_and_extrinsic_coords_vectorization(self):
        """
        Test that the composition of
        intrinsic_to_extrinsic_coords and
        extrinsic_to_intrinsic_coords
        gives the identity.
        """
        point_int = gs.array([[.1, 0., 0., .1, 0., 0.],
                              [.1, .1, .1, .4, .1, 0.],
                              [.1, .3, 0., .1, 0., 0.],
                              [-0.1, .1, -.4, .1, -.01, 0.],
                              [0., 0., .1, .1, -0.08, -0.1],
                              [.1, .1, .1, .1, 0., -0.5]])
        point_ext = self.space.from_coordinates(point_int, 'intrinsic')
        result = self.space.to_coordinates(point_ext, 'intrinsic')
        expected = point_int
        expected = helper.to_vector(expected)

        self.assertAllClose(result, expected)

        point_ext = gs.array([[2., 1., 1., 1.],
                              [4., 1., 3., math.sqrt(5.)],
                              [3., 2., 0., 2.]])
        point_int = self.space.to_coordinates(point_ext, 'intrinsic')
        result = self.space.from_coordinates(point_int, 'intrinsic')
        expected = point_ext
        expected = helper.to_vector(expected)

        self.assertAllClose(result, expected)

    def test_log_and_exp_general_case(self):
        """
        Test that the Riemannian exponential
        and the Riemannian logarithm are inverse.

        Expect their composition to give the identity function.
        """
        # Riemannian Log then Riemannian Exp
        # General case
        base_point = gs.array([4.0, 1., 3.0, math.sqrt(5.)])
        point = gs.array([2.0, 1.0, 1.0, 1.0])

        log = self.metric.log(point=point, base_point=base_point)

        result = self.metric.exp(tangent_vec=log, base_point=base_point)
        expected = point
        self.assertAllClose(result, expected)

    def test_log_and_exp_general_case_general_dim(self):
        """
        Test that the Riemannian exponential
        and the Riemannian logarithm are inverse.

        Expect their composition to give the identity function.
        """
        # Riemannian Log then Riemannian Exp
        dim = 5
        n_samples = self.n_samples

        h5 = Hyperboloid(dim=dim)
        h5_metric = h5.metric

        base_point = h5.random_uniform()
        point = h5.random_uniform()

        one_log = h5_metric.log(point=point, base_point=base_point)

        result = h5_metric.exp(tangent_vec=one_log, base_point=base_point)
        expected = point
        self.assertAllClose(result, expected)

        # Test vectorization of log
        base_point = gs.stack([base_point] * n_samples, axis=0)
        point = gs.stack([point] * n_samples, axis=0)
        expected = gs.stack([one_log] * n_samples, axis=0)

        log = h5_metric.log(point=point, base_point=base_point)
        result = log

        self.assertAllClose(gs.shape(result), (n_samples, dim + 1))
        self.assertAllClose(result, expected)

        result = h5_metric.exp(tangent_vec=log, base_point=base_point)
        expected = point

        self.assertAllClose(gs.shape(result), (n_samples, dim + 1))
        self.assertAllClose(result, expected)

        # Test vectorization of exp
        tangent_vec = gs.stack([one_log] * n_samples, axis=0)
        exp = h5_metric.exp(tangent_vec=tangent_vec, base_point=base_point)
        result = exp

        expected = point
        self.assertAllClose(gs.shape(result), (n_samples, dim + 1))
        self.assertAllClose(result, expected)

    def test_exp_and_belongs(self):
        H2 = Hyperboloid(dim=2)
        METRIC = H2.metric

        base_point = gs.array([1., 0., 0.])
        self.assertTrue(H2.belongs(base_point))

        tangent_vec = H2.projection_to_tangent_space(
            vector=gs.array([1., 2., 1.]),
            base_point=base_point)
        exp = METRIC.exp(tangent_vec=tangent_vec,
                         base_point=base_point)
        self.assertTrue(H2.belongs(exp))

    @geomstats.tests.np_and_pytorch_only
    def test_exp_vectorization(self):
        n_samples = 3
        dim = self.dimension + 1

        one_vec = gs.array([2.0, 1.0, 1.0, 1.0])
        one_base_point = gs.array([4.0, 3., 1.0, math.sqrt(5)])
        n_vecs = gs.array([[2., 1., 1., 1.],
                           [4., 1., 3., math.sqrt(5.)],
                           [3., 2., 0., 2.]])
        n_base_points = gs.array([
            [2.0, 0.0, 1.0, math.sqrt(2)],
            [5.0, math.sqrt(8), math.sqrt(8), math.sqrt(8)],
            [1.0, 0.0, 0.0, 0.0]])

        one_tangent_vec = self.space.projection_to_tangent_space(
            one_vec, base_point=one_base_point)
        result = self.metric.exp(one_tangent_vec, one_base_point)
        self.assertAllClose(gs.shape(result), (dim,))

        n_tangent_vecs = self.space.projection_to_tangent_space(
            n_vecs, base_point=one_base_point)
        result = self.metric.exp(n_tangent_vecs, one_base_point)
        self.assertAllClose(gs.shape(result), (n_samples, dim))

        expected = gs.zeros((n_samples, dim))

        for i in range(n_samples):
            expected[i] = self.metric.exp(n_tangent_vecs[i], one_base_point)
        expected = helper.to_vector(gs.array(expected))
        self.assertAllClose(result, expected)

        one_tangent_vec = self.space.projection_to_tangent_space(
            one_vec, base_point=n_base_points)
        result = self.metric.exp(one_tangent_vec, n_base_points)
        self.assertAllClose(gs.shape(result), (n_samples, dim))

        expected = gs.zeros((n_samples, dim))
        for i in range(n_samples):
            expected[i] = self.metric.exp(one_tangent_vec[i], n_base_points[i])
        expected = helper.to_vector(gs.array(expected))
        self.assertAllClose(result, expected)

        n_tangent_vecs = self.space.projection_to_tangent_space(
            n_vecs, base_point=n_base_points)
        result = self.metric.exp(n_tangent_vecs, n_base_points)
        self.assertAllClose(gs.shape(result), (n_samples, dim))

        expected = gs.zeros((n_samples, dim))
        for i in range(n_samples):
            expected[i] = self.metric.exp(n_tangent_vecs[i], n_base_points[i])
        expected = helper.to_vector(gs.array(expected))
        self.assertAllClose(result, expected)

    def test_log_vectorization(self):
        n_samples = 3
        dim = self.dimension + 1

        one_point = gs.array([2.0, 1.0, 1.0, 1.0])
        one_base_point = gs.array([4.0, 3., 1.0, math.sqrt(5)])
        n_points = gs.array([[2.0, 1.0, 1.0, 1.0],
                             [4.0, 1., 3.0, math.sqrt(5)],
                             [3.0, 2.0, 0.0, 2.0]])
        n_base_points = gs.array([
            [2.0, 0.0, 1.0, math.sqrt(2)],
            [5.0, math.sqrt(8), math.sqrt(8), math.sqrt(8)],
            [1.0, 0.0, 0.0, 0.0]])

        result = self.metric.log(one_point, one_base_point)
        self.assertAllClose(gs.shape(result), (dim,))

        result = self.metric.log(n_points, one_base_point)
        self.assertAllClose(gs.shape(result), (n_samples, dim))

        result = self.metric.log(one_point, n_base_points)
        self.assertAllClose(gs.shape(result), (n_samples, dim))

        result = self.metric.log(n_points, n_base_points)
        self.assertAllClose(gs.shape(result), (n_samples, dim))

    def test_inner_product(self):
        """
        Test that the inner product between two tangent vectors
        is the Minkowski inner product.
        """
        minkowski_space = Minkowski(self.dimension + 1)
        base_point = gs.array(
            [1.16563816, 0.36381045, -0.47000603, 0.07381469])

        tangent_vec_a = self.space.projection_to_tangent_space(
            vector=gs.array([10., 200., 1., 1.]),
            base_point=base_point)

        tangent_vec_b = self.space.projection_to_tangent_space(
            vector=gs.array([11., 20., -21., 0.]),
            base_point=base_point)

        result = self.metric.inner_product(
            tangent_vec_a, tangent_vec_b, base_point)

        expected = minkowski_space.metric.inner_product(
            tangent_vec_a, tangent_vec_b, base_point)

        self.assertAllClose(result, expected)

    def test_squared_norm_and_squared_dist(self):
        """
        Test that the squared distance between two points is
        the squared norm of their logarithm.
        """
        point_a = gs.array([2.0, 1.0, 1.0, 1.0])
        point_b = gs.array([4.0, 1., 3.0, math.sqrt(5)])
        log = self.metric.log(point=point_a, base_point=point_b)
        result = self.metric.squared_norm(vector=log)
        expected = self.metric.squared_dist(point_a, point_b)

        self.assertAllClose(result, expected)

    def test_norm_and_dist(self):
        """
        Test that the distance between two points is
        the norm of their logarithm.
        """
        point_a = gs.array([2.0, 1.0, 1.0, 1.0])
        point_b = gs.array([4.0, 1., 3.0, math.sqrt(5)])
        log = self.metric.log(point=point_a, base_point=point_b)
        result = self.metric.norm(vector=log)
        expected = self.metric.dist(point_a, point_b)

        self.assertAllClose(result, expected)

    def test_log_and_exp_edge_case(self):
        """
        Test that the Riemannian exponential
        and the Riemannian logarithm are inverse.

        Expect their composition to give the identity function.
        """
        # Riemannian Log then Riemannian Exp
        # Edge case: two very close points, base_point_2 and point_2,
        # form an angle < epsilon
        base_point_intrinsic = gs.array([1., 2., 3.])
        base_point =\
            self.space.from_coordinates(base_point_intrinsic, 'intrinsic')
        point_intrinsic = (base_point_intrinsic +
                           1e-12 * gs.array([-1., -2., 1.]))
        point =\
            self.space.from_coordinates(point_intrinsic, 'intrinsic')

        log = self.metric.log(point=point, base_point=base_point)
        result = self.metric.exp(tangent_vec=log, base_point=base_point)
        expected = point

        self.assertAllClose(result, expected)

    @geomstats.tests.np_and_tf_only
    def test_exp_and_log_and_projection_to_tangent_space_general_case(self):
        """
        Test that the Riemannian exponential
        and the Riemannian logarithm are inverse.

        Expect their composition to give the identity function.
        """
        # Riemannian Exp then Riemannian Log
        # General case
        base_point = gs.array([4.0, 1., 3.0, math.sqrt(5)])
        vector = gs.array([2.0, 1.0, 1.0, 1.0])
        vector = self.space.projection_to_tangent_space(
            vector=vector,
            base_point=base_point)
        exp = self.metric.exp(tangent_vec=vector, base_point=base_point)
        result = self.metric.log(point=exp, base_point=base_point)

        expected = vector
        self.assertAllClose(result, expected)

    def test_dist(self):
        # Distance between a point and itself is 0.
        point_a = gs.array([4.0, 1., 3.0, math.sqrt(5)])
        point_b = point_a
        result = self.metric.dist(point_a, point_b)
        expected = 0
        self.assertAllClose(result, expected)

    def test_exp_and_dist_and_projection_to_tangent_space(self):
        base_point = gs.array([4.0, 1., 3.0, math.sqrt(5)])
        vector = gs.array([0.001, 0., -.00001, -.00003])
        tangent_vec = self.space.projection_to_tangent_space(
            vector=vector,
            base_point=base_point)
        exp = self.metric.exp(
            tangent_vec=tangent_vec,
            base_point=base_point)

        result = self.metric.dist(base_point, exp)
        sq_norm = self.metric.embedding_metric.squared_norm(
            tangent_vec)
        expected = sq_norm
        self.assertAllClose(result, expected, atol=1e-2)

    def test_geodesic_and_belongs(self):
        # TODO(nina): Fix this tests, as it fails when geodesic goes "too far"
        initial_point = gs.array([4.0, 1., 3.0, math.sqrt(5)])
        n_geodesic_points = 100
        vector = gs.array([1., 0., 0., 0.])

        initial_tangent_vec = self.space.projection_to_tangent_space(
            vector=vector,
            base_point=initial_point)
        geodesic = self.metric.geodesic(
            initial_point=initial_point,
            initial_tangent_vec=initial_tangent_vec)

        t = gs.linspace(start=0., stop=1., num=n_geodesic_points)
        points = geodesic(t)
        result = self.space.belongs(points)
        expected = n_geodesic_points * [True]

        self.assertAllClose(result, expected)

    def test_exp_and_log_and_projection_to_tangent_space_edge_case(self):
        """
        Test that the Riemannian exponential and
        the Riemannian logarithm are inverse.

        Expect their composition to give the identity function.
        """
        # Riemannian Exp then Riemannian Log
        # Edge case: tangent vector has norm < epsilon
        base_point = gs.array([2., 1., 1., 1.])
        vector = 1e-10 * gs.array([.06, -51., 6., 5.])

        exp = self.metric.exp(tangent_vec=vector, base_point=base_point)
        result = self.metric.log(point=exp, base_point=base_point)
        expected = self.space.projection_to_tangent_space(
            vector=vector,
            base_point=base_point)

        self.assertAllClose(result, expected, atol=1e-8)

    @geomstats.tests.np_only
    def test_scaled_inner_product(self):
        base_point_intrinsic = gs.array([1, 1, 1])
        base_point = self.space.from_coordinates(
            base_point_intrinsic, "intrinsic")
        tangent_vec_a = gs.array([1, 2, 3, 4])
        tangent_vec_b = gs.array([5, 6, 7, 8])
        tangent_vec_a = self.space.projection_to_tangent_space(
            tangent_vec_a,
            base_point)
        tangent_vec_b = self.space.projection_to_tangent_space(
            tangent_vec_b,
            base_point)
        scale = 2
        default_space = Hyperboloid(dim=self.dimension)
        scaled_space = Hyperboloid(dim=self.dimension, scale=2)
        inner_product_default_metric = \
            default_space.metric.inner_product(
                tangent_vec_a,
                tangent_vec_b,
                base_point)
        inner_product_scaled_metric = \
            scaled_space.metric.inner_product(
                tangent_vec_a,
                tangent_vec_b,
                base_point)
        result = inner_product_scaled_metric
        expected = scale ** 2 * inner_product_default_metric
        self.assertAllClose(result, expected)

    @geomstats.tests.np_only
    def test_scaled_squared_norm(self):
        base_point_intrinsic = gs.array([1, 1, 1])
        base_point = self.space.from_coordinates(base_point_intrinsic,
                                                 'intrinsic')
        tangent_vec = gs.array([1, 2, 3, 4])
        tangent_vec = self.space.projection_to_tangent_space(
            tangent_vec, base_point)
        scale = 2
        default_space = Hyperboloid(dim=self.dimension)
        scaled_space = Hyperboloid(dim=self.dimension, scale=2)
        squared_norm_default_metric = default_space.metric.squared_norm(
            tangent_vec, base_point)
        squared_norm_scaled_metric = scaled_space.metric.squared_norm(
            tangent_vec, base_point)
        result = squared_norm_scaled_metric
        expected = scale ** 2 * squared_norm_default_metric
        self.assertAllClose(result, expected)

    @geomstats.tests.np_only
    def test_scaled_distance(self):
        point_a_intrinsic = gs.array([1, 2, 3])
        point_b_intrinsic = gs.array([4, 5, 6])
        point_a = self.space.from_coordinates(point_a_intrinsic, 'intrinsic')
        point_b = self.space.from_coordinates(point_b_intrinsic, 'intrinsic')
        scale = 2
        scaled_space = Hyperboloid(dim=self.dimension, scale=2)
        distance_default_metric = self.space.metric.dist(point_a, point_b)
        distance_scaled_metric = scaled_space.metric.dist(point_a, point_b)
        result = distance_scaled_metric
        expected = scale * distance_default_metric
        self.assertAllClose(result, expected)