def make_data_noisy(self, eigenspace, eigenvalues, var, var_eigenvalues):
        """Generate noisy Gaussian data from mean matrix and variance.

        Parameters
        ----------
        eigenspace : array-like, shape = [n, n]
            Data eigenvectors.
        eigenvalues : array-like, shape = [n, n]
            Eigenvalues matrix (diagonal matrix).
        var : float
            Variance of the wanted distribution.
        var_eigenvalues : float
            Noise within the distribution.

        Returns
        -------
        spd_data : array-like, shape = [n, n]
            Output data.
        """
        spd = SPDMatrices(n=self.n_features)
        eigensummary = EigenSummary(eigenspace, eigenvalues)
        spd_data = spd.random_gaussian_rotation_orbit_noisy(
            eigensummary=eigensummary,
            var_rotations=var,
            var_eigenvalues=var_eigenvalues,
            n_samples=self.n_samples)
        return spd_data
Example #2
0
 def setUp(self):
     """Set up  the test"""
     self.n = 3
     self.spd_cov_n = (self.n * (self.n + 1)) // 2
     self.samples = 5
     self.SPDManifold = SPDMatrices(self.n)
     self.Euclidean = Euclidean(self.n)
Example #3
0
    def setUp(self):
        gs.random.seed(0)
        n = 3
        self.base = SPDMatrices(n)
        self.base_metric = SPDMetricBuresWasserstein(n)
        self.group = SpecialOrthogonal(n)
        self.bundle = FiberBundle(GeneralLinear(n),
                                  base=self.base,
                                  group=self.group)
        self.quotient_metric = QuotientMetric(self.bundle,
                                              ambient_metric=MatricesMetric(
                                                  n, n))

        def submersion(point):
            return GeneralLinear.mul(point, GeneralLinear.transpose(point))

        def tangent_submersion(tangent_vec, base_point):
            product = GeneralLinear.mul(base_point,
                                        GeneralLinear.transpose(tangent_vec))
            return 2 * GeneralLinear.to_symmetric(product)

        def horizontal_lift(tangent_vec, point, base_point=None):
            if base_point is None:
                base_point = submersion(point)
            sylvester = gs.linalg.solve_sylvester(base_point, base_point,
                                                  tangent_vec)
            return GeneralLinear.mul(sylvester, point)

        self.bundle.submersion = submersion
        self.bundle.tangent_submersion = tangent_submersion
        self.bundle.horizontal_lift = horizontal_lift
        self.bundle.lift = gs.linalg.cholesky
Example #4
0
 def test_estimate_spd_two_samples(self):
     space = SPDMatrices(3)
     metric = SPDMetricAffine(3)
     point = space.random_point(2)
     mean = FrechetMean(metric)
     mean.fit(point)
     result = mean.estimate_
     expected = metric.exp(metric.log(point[0], point[1]) / 2, point[1])
     self.assertAllClose(expected, result)
Example #5
0
 def setup_method(self):
     """Set up  the test"""
     self.n = 3
     self.spd_cov_n = (self.n * (self.n + 1)) // 2
     self.samples = 5
     self.spd = SPDMatrices(self.n)
     self.log_euclidean = SPDMetricLogEuclidean(self.n)
     self.affine_invariant = SPDMetricAffine(self.n)
     self.euclidean = Euclidean(self.n)
Example #6
0
    def setUp(self):
        self.so3 = SpecialOrthogonal(n=3)
        self.spd = SPDMatrices(3)
        self.spd_metric = SPDMetricAffine(3)

        self.n_samples = 10

        self.X = self.so3.random_uniform(n_samples=self.n_samples)
        self.metric = self.so3.bi_invariant_metric
        self.n_components = 2
Example #7
0
    def setUp(self):
        warnings.simplefilter('ignore', category=ImportWarning)

        gs.random.seed(1234)

        self.n = 3
        self.space = SPDMatrices(n=self.n)
        self.metric_affine = SPDMetricAffine(n=self.n)
        self.metric_procrustes = SPDMetricProcrustes(n=self.n)
        self.metric_euclidean = SPDMetricEuclidean(n=self.n)
        self.metric_logeuclidean = SPDMetricLogEuclidean(n=self.n)
        self.n_samples = 4
    def test_ifm_affine_invariant_belongs(self):
        mean = 2 * gs.eye(self.n)
        cov = gs.eye(self.spd_cov_n)

        spd = SPDMatrices(self.n)
        LogNormalSampler = LogNormal(self.spd, mean, cov)
        data = LogNormalSampler.sample(20)
        ifm = IncrementalFrechetMean(self.affine_invariant).fit(data)
        ifm_mean = ifm.estimate_
        result = gs.all(spd.belongs(ifm_mean))
        expected = gs.array(True)
        self.assertAllClose(result, expected)
    def setUp(self):
        """Set up the test."""
        warnings.simplefilter('ignore', category=ImportWarning)

        gs.random.seed(1234)

        self.n = 3
        self.space = SPDMatrices(n=self.n)
        self.metric_affine = SPDMetricAffine(n=self.n)
        self.metric_bureswasserstein = SPDMetricBuresWasserstein(n=self.n)
        self.metric_euclidean = SPDMetricEuclidean(n=self.n)
        self.metric_logeuclidean = SPDMetricLogEuclidean(n=self.n)
        self.n_samples = 4
    def setUp_alt(self, n=3, n_samples=4):
        """Set up the test, flexible parameters."""
        warnings.simplefilter('ignore', category=ImportWarning)

        gs.random.seed(1234)

        self.n = n
        self.space = SPDMatrices(n=self.n)
        self.metric_affine = SPDMetricAffine(n=self.n)
        self.metric_procrustes = SPDMetricProcrustes(n=self.n)
        self.metric_euclidean = SPDMetricEuclidean(n=self.n)
        self.metric_logeuclidean = SPDMetricLogEuclidean(n=self.n)
        self.n_samples = n_samples
Example #11
0
    def test_load_connectomes(self):
        """Test that the connectomes belong to SPD."""
        spd = SPDMatrices(28)
        data, _, _ = data_utils.load_connectomes(as_vectors=True)
        result = data.shape
        expected = (86, 27 * 14)
        self.assertAllClose(result, expected)

        data, _, labels = data_utils.load_connectomes()
        result = spd.belongs(data)
        self.assertTrue(gs.all(result))

        result = gs.logical_and(labels >= 0, labels <= 1)
        self.assertTrue(gs.all(result))
Example #12
0
 def test_differential_cholesky_factor(self, n, tangent_vec, base_point,
                                       expected):
     result = SPDMatrices.differential_cholesky_factor(
         gs.array(tangent_vec), gs.array(base_point))
     self.assertAllClose(result, gs.array(expected))
     self.assertAllClose(gs.all(LowerTriangularMatrices(n).belongs(result)),
                         gs.array(True))
Example #13
0
 def test_inverse_transform_spd(self):
     point = SPDMatrices(3).random_uniform(10)
     mean = FrechetMean(metric=SPDMetricAffine(3), point_type='matrix')
     X = mean.fit_transform(X=point)
     result = mean.inverse_transform(X)
     expected = point
     self.assertAllClose(expected, result)
Example #14
0
 def test_belongs(self):
     """Test of belongs method."""
     mats = gs.array(
         [[1., 1.], [1., 1.]])
     result = SPDMatrices.belongs(mats)
     expected = False
     self.assertAllClose(result, expected)
Example #15
0
 def test_inverse_transform_spd(self):
     point = SPDMatrices(3).random_uniform(10)
     transformer = ToTangentSpace(geometry=SPDMetricAffine(3))
     X = transformer.fit_transform(X=point)
     result = transformer.inverse_transform(X)
     expected = point
     self.assertAllClose(expected, result, atol=1e-4)
Example #16
0
 def cholesky_factor_belongs_test_data(self):
     list_n = random.sample(range(1, 100), 10)
     n_samples = 10
     random_data = [
         dict(n=n, mat=SPDMatrices(n).random_point(n_samples)) for n in list_n
     ]
     return self.generate_tests([], random_data)
    def test_belongs(self):
        """Test of belongs method."""
        mats = gs.array([[3., -1.], [-1., 3.]])
        result = SPDMatrices(2).belongs(mats)
        expected = True
        self.assertAllClose(result, expected)

        mats = gs.array([[-1., -1.], [-1., 3.]])
        result = SPDMatrices(2).belongs(mats)
        expected = False
        self.assertAllClose(result, expected)

        mats = gs.eye(3)
        result = SPDMatrices(2).belongs(mats)
        expected = False
        self.assertAllClose(result, expected)
 def test_belongs_vectorization(self):
     """Test of belongs method."""
     mats = gs.array([[[1., 0], [0, 1.]], [[1., 2.], [2., 1.]],
                      [[1., 0.], [1., 1.]]])
     result = SPDMatrices(2).belongs(mats)
     expected = gs.array([True, False, False])
     self.assertAllClose(result, expected)
Example #19
0
 def __init__(self, n):
     super(BuresWassersteinBundle, self).__init__(
         n=n,
         base=SPDMatrices(n),
         group=SpecialOrthogonal(n),
         ambient_metric=MatricesMetric(n, n),
     )
Example #20
0
    def test_batched(self):
        space = SPDMatrices(3)
        metric = SPDMetricAffine(3)
        point = space.random_point(4)
        mean_batch = FrechetMean(metric, method="batch", verbose=True)
        data = gs.stack([point[:2], point[2:]], axis=1)
        mean_batch.fit(data)
        result = mean_batch.estimate_

        mean = FrechetMean(metric)
        mean.fit(data[:, 0])
        expected_1 = mean.estimate_
        mean.fit(data[:, 1])
        expected_2 = mean.estimate_
        expected = gs.stack([expected_1, expected_2])
        self.assertAllClose(expected, result)
Example #21
0
 def test_belongs(self):
     mats = gs.array([
         [[1., 1.], [1., 1.]],
         [[1., 2.], [2., 1.]],
         [[1., 0.], [1., 1.]]])
     result = SPDMatrices.belongs(mats)
     expected = gs.array([True, True, False])
     self.assertAllClose(result, expected)
Example #22
0
 def test_estimate_spd(self):
     point = SPDMatrices(3).random_point()
     points = gs.array([point, point])
     mean = FrechetMean(metric=SPDMetricAffine(3), point_type='matrix')
     mean.fit(X=points)
     result = mean.estimate_
     expected = point
     self.assertAllClose(expected, result)
Example #23
0
 def test_estimate_transform_spd(self):
     point = SPDMatrices(3).random_uniform()
     points = gs.stack([point, point])
     transformer = ToTangentSpace(geometry=SPDMetricAffine(3))
     transformer.fit(X=points)
     result = transformer.transform(points)
     expected = gs.zeros((2, 6))
     self.assertAllClose(expected, result, atol=1e-5)
Example #24
0
    def setup_method(self):
        self.n_samples = 10
        self.SO3_GROUP = SpecialOrthogonal(n=3, point_type="vector")
        self.SE3_GROUP = SpecialEuclidean(n=3, point_type="vector")
        self.S1 = Hypersphere(dim=1)
        self.S2 = Hypersphere(dim=2)
        self.H2 = Hyperbolic(dim=2)
        self.H2_half_plane = PoincareHalfSpace(dim=2)
        self.M32 = Matrices(m=3, n=2)
        self.S32 = PreShapeSpace(k_landmarks=3, m_ambient=2)
        self.KS = visualization.KendallSphere()
        self.M33 = Matrices(m=3, n=3)
        self.S33 = PreShapeSpace(k_landmarks=3, m_ambient=3)
        self.KD = visualization.KendallDisk()
        self.spd = SPDMatrices(n=2)

        plt.figure()
Example #25
0
 def test_estimate_transform_spd(self):
     point = SPDMatrices(3).random_uniform()
     points = gs.array([point, point])
     mean = FrechetMean(metric=SPDMetricAffine(3), point_type='matrix')
     mean.fit(X=points)
     result = mean.transform(points)
     expected = gs.zeros((2, 6))
     self.assertAllClose(expected, result)
Example #26
0
    def test_cholesky_factor(self, n, spd_mat, cf):
        result = SPDMatrices.cholesky_factor(gs.array(spd_mat))

        self.assertAllClose(result, gs.array(cf))
        self.assertAllClose(
            gs.all(PositiveLowerTriangularMatrices(n).belongs(result)),
            gs.array(True),
        )
Example #27
0
 def __init__(self, n):
     super(FullRankCorrelationMatrices, self).__init__(
         dim=int(n * (n - 1) / 2),
         embedding_space=SPDMatrices(n=n),
         submersion=Matrices.diagonal,
         value=gs.ones(n),
         tangent_submersion=lambda v, x: Matrices.diagonal(v),
     )
     self.n = n
Example #28
0
 def unary_op_like_np_test_data(self):
     smoke_data = [
         dict(func_name="trace", a=rand(2, 2)),
         dict(func_name="trace", a=rand(3, 3)),
         dict(func_name="linalg.cholesky", a=SPDMatrices(3).random_point()),
         dict(func_name="linalg.eigvalsh",
              a=SymmetricMatrices(3).random_point()),
     ]
     return self.generate_tests(smoke_data)
 def __init__(self, n, **kwargs):
     kwargs.setdefault("metric", FullRankCorrelationAffineQuotientMetric(n))
     super(FullRankCorrelationMatrices, self).__init__(
         dim=int(n * (n - 1) / 2),
         embedding_space=SPDMatrices(n=n),
         submersion=Matrices.diagonal,
         value=gs.ones(n),
         tangent_submersion=lambda v, x: Matrices.diagonal(v),
         **kwargs)
     self.n = n
Example #30
0
 def __new__(
     cls,
     n,
     k,
     **kwargs,
 ):
     if n > k:
         return RankKPSDMatrices(n, k, **kwargs)
     if n == k:
         return SPDMatrices(n, **kwargs)
     raise NotImplementedError('The PSD matrices is not implemented yet')