Example #1
0
class TestData(unittest.TestCase):

    def setUp(self):
        self.D = GeoData(None, None)
        self.D._init_sample_object(nt=None, ny=180, nx=360)
        self._tmpdir = tempfile.mkdtemp()

    def test_imshow(self):
        # test simple mapping using imshow only
        S = SingleMap(self.D)
        S.plot()

    def test_basemap(self):
        # test simple mapping using basemap
        S = SingleMap(self.D, backend='imshow')
        S.plot()

    def test_cartopy(self):
        # test simple mapping using cartopy
        S = SingleMap(self.D, backend='cartopy')
        S.plot(proj_prop={'projection' : 'robin'})
Example #2
0
    def map_trends(self,
                   SIG_R,
                   ME,
                   PHI,
                   SLOPE,
                   var_t,
                   force=False,
                   time_unit=None):
        """
        STD : GeoData
        ME : GeoData
        """
        assert time_unit is not None, 'Time unit needs to be provided'

        if SIG_R.ndim == 3:
            if SIG_R.nt == 1:
                SIG_R.data = SIG_R.data[0, :, :]
            else:
                assert False
        if ME.ndim == 3:
            if ME.nt == 1:
                ME.data = ME.data[0, :, :]
            else:
                assert False
        if PHI.ndim == 3:
            if PHI.nt == 1:
                PHI.data = PHI.data[0, :, :]
            else:
                assert False
        if SLOPE.ndim == 3:
            if SLOPE.nt == 1:
                SLOPE.data = SLOPE.data[0, :, :]
            else:
                assert False

        assert SIG_R.data.ndim == 2
        assert ME.data.ndim == 2
        assert PHI.data.ndim == 2
        assert SLOPE.data.ndim == 2

        # coefficient of variation
        self._calc_cv(PHI, SLOPE, SIG_R, ME, var_t)
        print self.CV.min, self.CV.max

        # mask for valid pixels
        msk = ~self.CV.data.mask

        # vectors which correpond to data that should be interpolated to
        cvs = self.CV.data[msk].flatten()
        means = ME.data[msk].flatten()
        phis = PHI.data[msk].flatten()

        print 'NPixels: ', len(means)

        if hasattr(self, 'X'):
            if force:
                do_calc = True
            else:
                do_calc = False
        else:
            do_calc = True

        if do_calc:
            # interpolation

            z = self._interpolate_fast(cvs, means, phis)

            # map back to original geometry
            tmp = np.ones(ME.nx * ME.ny) * np.nan
            tmp[msk.flatten()] = z
            tmp = tmp.reshape((ME.ny, ME.nx))

            X = GeoData(None, None)
            X._init_sample_object(nt=None, ny=ME.ny, nx=ME.nx, gaps=False)
            X.data = np.ma.array(tmp, mask=tmp != tmp)

            self.X = X
            self.X.lon = ME.lon * 1.
            self.X.lat = ME.lat * 1.
            self.X.unit = 'trend / ' + time_unit
            self.X._trend_unit = time_unit
Example #3
0
 def setUp(self):
     self.D = GeoData(None, None)
     self.D._init_sample_object(nt=1000, ny=1, nx=1)
     self._tmpdir = tempfile.mkdtemp()
Example #4
0
class TestTrend(unittest.TestCase):

    def setUp(self):
        self.D = GeoData(None, None)
        self.D._init_sample_object(nt=1000, ny=1, nx=1)
        self._tmpdir = tempfile.mkdtemp()

    def _generate_sample_lut(self):
        lutname = tempfile.mktemp(suffix='.pkl')

        cvs = np.asarray([1.,2.,3.])
        means = np.asarray([10.,20.])
        phis = np.asarray([0.9])
        lut = np.ones((len(phis),len(means), len(cvs)))*np.nan
        lut[0,0,0] = 0.1
        lut[0,0,1] = 0.2
        lut[0,0,2] = np.nan
        lut[0,1,0] = 0.4
        lut[0,1,1] = 0.5
        lut[0,1,2] = 0.6

        #lut = np.asarray([[0.1,0.2,np.nan],[0.4,0.5,0.6]])

        d = {'cvs' : cvs, 'means' : means, 'res' : lut, 'phis' : phis}
        cPickle.dump(d, open(lutname, 'w'))
        return lutname, d

    def test_mintrend_lut_interpolation(self):
        lutname, d = self._generate_sample_lut()
        P = MintrendPlot(lutname)
        self.assertEqual(P._lutname, lutname)

    def test_read_lut(self):
        # check that LUT is read properly
        lutname, d = self._generate_sample_lut()
        P = MintrendPlot(lutname)

        self.assertEqual(len(P.cvs),5)
        self.assertEqual(len(P.means),5)
        self.assertEqual(len(P.lut),5)
        self.assertEqual(list(P.lut), [0.1,0.2,0.4,0.5,0.6])

    def test_interpolate(self):
        lutname, d = self._generate_sample_lut()
        P = MintrendPlot(lutname)
#~
        # first interpolate to same coordinates as given
        # should give same results
        # cvs, means, phis
        z = P._interpolate_fast([1.], [10.], [0.9])
        self.assertEqual(z[0],0.1)

        z = P._interpolate_fast([2.], [10.], [0.9])
        self.assertEqual(z[0],0.2)

        z = P._interpolate_fast([1.], [20.], [0.9])
        self.assertEqual(z[0],0.4)

        z = P._interpolate_fast([2.], [20.], [0.9])
        self.assertEqual(z[0],0.5)

        z = P._interpolate_fast([3.], [20.], [0.9])
        self.assertEqual(z[0],0.6)

        # now check real interpolation
        z = P._interpolate_fast([2.], [15.], [0.9])
        self.assertEqual(z[0],0.35)

        z = P._interpolate_fast([1.], [15.], [0.9])
        self.assertEqual(z[0],0.25)
Example #5
0
    def map_trends(self, SIG_R, ME, PHI, SLOPE, var_t, force=False, time_unit=None):
        """
        STD : GeoData
        ME : GeoData
        """
        assert time_unit is not None, 'Time unit needs to be provided'

        if SIG_R.ndim == 3:
            if SIG_R.nt == 1:
                SIG_R.data = SIG_R.data[0,:,:]
            else:
                assert False
        if ME.ndim == 3:
            if ME.nt == 1:
                ME.data = ME.data[0,:,:]
            else:
                assert False
        if PHI.ndim == 3:
            if PHI.nt == 1:
                PHI.data = PHI.data[0,:,:]
            else:
                assert False
        if SLOPE.ndim == 3:
            if SLOPE.nt == 1:
                SLOPE.data = SLOPE.data[0,:,:]
            else:
                assert False

        assert SIG_R.data.ndim == 2
        assert ME.data.ndim == 2
        assert PHI.data.ndim == 2
        assert SLOPE.data.ndim == 2

        # coefficient of variation
        self._calc_cv(PHI, SLOPE, SIG_R, ME, var_t)
        print self.CV.min, self.CV.max


        # mask for valid pixels
        msk = ~self.CV.data.mask

        # vectors which correpond to data that should be interpolated to
        cvs = self.CV.data[msk].flatten()
        means = ME.data[msk].flatten()
        phis = PHI.data[msk].flatten()

        print 'NPixels: ', len(means)

        if hasattr(self, 'X'):
            if force:
                do_calc = True
            else:
                do_calc = False
        else:
            do_calc = True

        if do_calc:
            # interpolation

            z = self._interpolate_fast(cvs, means, phis)

            # map back to original geometry
            tmp = np.ones(ME.nx*ME.ny)*np.nan
            tmp[msk.flatten()] = z
            tmp = tmp.reshape((ME.ny,ME.nx))

            X = GeoData(None, None)
            X._init_sample_object(nt=None, ny=ME.ny, nx=ME.nx, gaps=False)
            X.data = np.ma.array(tmp, mask=tmp != tmp)

            self.X = X
            self.X.lon = ME.lon*1.
            self.X.lat = ME.lat*1.
            self.X.unit = 'trend / ' + time_unit
            self.X._trend_unit = time_unit