parser = argparse.ArgumentParser( description='Reads one argument -t (TYPE (e.g csv , json , api ))') parser.add_argument('-t', '--input_file_type', action='store',default = "csv", help='FILE TYPE.') args = parser.parse_args() return args if __name__ == '__main__': # v_args = GetArgs() # v_input_file_type = v_args.input_file_type v_input_file_type = "csv" # Import Data : class get_data obj_get_data = getdata() source_df = obj_get_data.ReadCSVData() # Transformation : class transformation obj_transformation = Transformation(source_df) obj_transformation.set_time_readable() obj_transformation.set_medium_source_path() top_source_medium_df = obj_transformation.final_dataframe() #v_name = top_source_medium_df. print(top_source_medium_df) distinctusers_batch = obj_transformation.execute_metrics(10000) print(distinctusers_batch) distinctusers_day = obj_transformation.calc_distinctusers_perday() print(distinctusers_day)
def main(): X, Y = getdata() print(len(X)) model = ann(200) model.fit(X, Y) print(model.score(X, Y))
position.append((y2,x2)) extreme.append(h_extreme2) return position,extreme if __name__ == "__main__": data = read() # 读取全部数据 # 根据风场设置假定中心点 , 滤波前,由500hPa风场确定的大致中心位置,m是纬度,n是经度 m = 32;n=86 p0 = (m,n) d = 0.25 # 取得想要的初始范围内的数据,y纬度,x经度, 初始范围内的位势高度场和涡度场 height, vorticity= getdata(data,m,n,d) h40,h45,h50,h55 = height vo40,vo45,vo50,vo55 = vorticity # 迭代过程中的一系列位置 ps_h40,exh40 = pos_height(vo55,m,n,d) ps_h45,exh45 = pos_height(h45,m,n,d) ps_h50,exh50 = pos_height(h50,m,n,d) ps_h55,exh55 = pos_height(h55,m,n,d) ps_vo40,exvo40 = pos_vorticity(vo40,m,n,d) ps_vo45,exvo45 = pos_vorticity(vo45,m,n,d) ps_vo50,exvo50 = pos_vorticity(vo50,m,n,d) ps_vo55,exvo55 = pos_vorticity(vo55,m,n,d) print(ps_h40,exh40)
# -*- coding: utf-8 -*- # @Time : 2020/3/16 11:07 # @Author : 永 # @File : MovingAverage.py # @Software: PyCharm import numpy as np import pandas as pd from get_data import getdata import talib import cgitb # 这句放在所有程序开始前,这样就可以正常打印异常了 cgitb.enable(format="text") df = getdata() def movingaverage(l, N): sum = 0 result = list(0 for x in l) for i in range(0, N): sum = sum + l[i] result[i] = sum / (i + 1) for i in range(N, len(l)): sum = sum - l[i - N] + l[i] result[i] = sum / N return result def rsiFunc(prices, n=14): deltas = np.diff(prices) seed = deltas[:n + 1]
position.append((y2,x2)) extreme.append(h_extreme2) return position,extreme if __name__ == "__main__": data = read() # 读取全部数据 # 第0步,根据风场假定中心点 # 根据风场设置假定中心点 m = 32;n=86 # 滤波前,由500hPa风场确定的大致中心位置,m是纬度,n是经度 p0 = (m,n) d = 0.25 # 初始范围内的位势高度场和涡度场 height, vorticity= getdata(data,m,n,d) # 取得想要的初始范围内的数据,y纬度,x经度 h40,h45,h50,h55 = height vo40,vo45,vo50,vo55 = vorticity # ps0 = pos(data0) # 迭代过程中的一系列位置 ps_h40,exh40 = pos_height(vo55,m,n,d) ps_h45,exh45 = pos_height(h45,m,n,d) ps_h50,exh50 = pos_height(h50,m,n,d) ps_h55,exh55 = pos_height(h55,m,n,d) ps_vo40,exvo40 = pos_vorticity(vo40,m,n,d) ps_vo45,exvo45 = pos_vorticity(vo45,m,n,d) ps_vo50,exvo50 = pos_vorticity(vo50,m,n,d) ps_vo55,exvo55 = pos_vorticity(vo55,m,n,d)