Example #1
0
NEUMANN_BOUNDARY = 1
DIRICHLET_BOUNDARY = 2
m.set_region(NEUMANN_BOUNDARY, ftop)
m.set_region(DIRICHLET_BOUNDARY, fbot)

# assembly
nbd = mfd.nbdof()
print "nbd: ", nbd
F = gf.asm_boundary_source(NEUMANN_BOUNDARY, mim, mfu, mfd,
                           np.repeat([[0], [-100], [0]], nbd, 1))
print "F.shape: ", F.shape
print "mfu.nbdof(): ", mfu.nbdof()
print "np.repeat([[0],[-100],[0]],nbd,1).shape:", np.repeat([[0], [-100], [0]],
                                                            nbd, 1).shape

K = gf.asm_linear_elasticity(mim, mfu, mfd, np.repeat([Lambda], nbd),
                             np.repeat([Mu], nbd))
print "K.info: ", K.info  # Spmat instance
print "np.repeat([Lambda], nbd).shape:", np.repeat([Lambda], nbd).shape
print "np.repeat([Mu], nbd).shape:", np.repeat([Mu], nbd).shape

# handle Dirichlet condition
(H, R) = gf.asm_dirichlet(DIRICHLET_BOUNDARY, mim, mfu, mfd,
                          mfd.eval('numpy.identity(3)'), mfd.eval('[0,0,0]'))
print "H.info: ", H.info  # Spmat instance
print "R.shape: ", R.shape
print "mfd.eval('numpy.identity(3)').shape: ", mfd.eval(
    'numpy.identity(3)').shape
print "mfd.eval('[0,0,0]').shape: ", mfd.eval('[0,0,0]').shape

(N, U0) = H.dirichlet_nullspace(R)
print "N.info: ", N.info  # Spmat instance
ftop = m.faces_from_pid(pidtop)
fbot = m.faces_from_pid(pidbot)
print "create boundary region"
NEUMANN_BOUNDARY = 1
DIRICHLET_BOUNDARY = 2
m.set_region(NEUMANN_BOUNDARY,ftop)
m.set_region(DIRICHLET_BOUNDARY,fbot)

print "create a MeshFem object"

mfd = gf.MeshFem(m, 1) # data

print "assign the FEM"
mfd.set_fem(gf.Fem('FEM_QK(3,3)'))

print "assembly"
nbd = mfd.nbdof()
K = gf.asm_linear_elasticity(mim, mfu, mfd, np.repeat([Lambda], nbd), np.repeat([Mu], nbd))
M = gf.asm_mass_matrix(mim, mfu)*rho

K.save('hb', 'K.hb')
M.save('hb', 'M.hb')

print "solve"

A = io.hb_read('M.hb')
B = io.hb_read('K.hb')

K = B.todense()
np.savetxt("K.txt", K, fmt=' (%+.18e) ')
Example #3
0
###############################################################################
# We get the mass and stiffness matrices using asm function.
#

mass_matrixs = []
linear_elasticitys = []

for i, (mfu, mfd, mim) in enumerate(zip(mfus, mfds, mims)):

    mass_matrix = gf.asm_mass_matrix(mim, mfu, mfu)
    mass_matrix.scale(rho)
    mass_matrixs.append(mass_matrix)

    lambda_d = np.repeat(clambda, mfd.nbdof())
    mu_d = np.repeat(cmu, mfd.nbdof())
    linear_elasticity = gf.asm_linear_elasticity(mim, mfu, mfd, lambda_d, mu_d)
    linear_elasticitys.append(linear_elasticity)

    mass_matrix.save("hb", "M" + "{:02}".format(i) + ".hb")
    linear_elasticity.save("hb", "K" + "{:02}".format(i) + ".hb")

print("Time for assemble matrix", time.process_time() - t)
t = time.process_time()

###############################################################################
# Solve the eigenproblem.
#
# Compute the residual error for SciPy.
#
# :math:`Err=\frac{||(K-\lambda.M).\phi||_2}{||K.\phi||_2}`
#
Example #4
0
def import_fem2(sico):
    """ Build a mesh object using getfem.
    
    We use getfem++ to build the finite element model and
    to fill in the operators required by siconos:
    - the mass matrix (Mass)
    - the stiffness matrix (Stiff)
    - the matrix that links global coordinates and local coord. at contact points (H)
    
    """
    ############################
    # The geometry and the mesh
    ############################
    dimX = 10.01 ; dimY = 10.01 ; dimZ = 10.01
    stepX = 1.0 ; stepY = 1.0 ; stepZ = 1.0
    x=np.arange(0,dimX,stepX)
    y=np.arange(0,dimY,stepY)
    z=np.arange(0,dimZ,stepZ)
    m = gf.Mesh('regular simplices', x,y,z)
    m.set('optimize_structure')
    # Export the mesh to vtk
    m.export_to_vtk("BlockMesh.vtk")

    # Create MeshFem objects
    # (i.e. assign elements onto the mesh for each variable)
    mfu = gf.MeshFem(m,3) # displacement
    mfd = gf.MeshFem(m,1) # data
    mff = gf.MeshFem(m,1) # for plot von-mises
    # assign the FEM
    mfu.set_fem(gf.Fem('FEM_PK(3,1)'))
    mfd.set_fem(gf.Fem('FEM_PK(3,0)'))
    mff.set_fem(gf.Fem('FEM_PK_DISCONTINUOUS(3,1,0.01)'))
    # mfu.export_to_vtk("BlockMeshDispl.vtk")

    # Set the integration method
    mim = gf.MeshIm(m,gf.Integ('IM_TETRAHEDRON(5)'))

    # Summary
    print(' ==================================== \n Mesh details: ')
    print(' Problem dimension:', mfu.qdim(), '\n Number of elements: ', m.nbcvs(), '\n Number of nodes: ', m.nbpts())
    print(' Number of dof: ', mfu.nbdof(), '\n Element type: ', mfu.fem()[0].char())
    print(' ====================================')

    ###########################
    # Set the parameters
    # for the constitutive law
    ###########################
    E = 1e3  # Young modulus
    Nu = 0.3 # Poisson coef.
    # Lame coeff.
    Lambda = E*Nu/((1+Nu)*(1-2*Nu))
    Mu = E/(2*(1+Nu))
    # Density
    Rho=7800
    ############################
    # Boundaries detection
    ############################
    allPoints = m.pts()
    # Bottom points and faces 
    cbot = (abs(allPoints[2,:])  < 1e-6)
    pidbot = np.compress(cbot,list(range(0,m.nbpts())))
    fbot = m.faces_from_pid(pidbot)
    BOTTOM = 1
    m.set_region(BOTTOM,fbot)
    # Top points and faces
    ctop = (abs(allPoints[2,:]) > dimZ-stepZ)
    pidtop = np.compress(ctop,list(range(0,m.nbpts())))
    ftop = m.faces_from_pid(pidtop)
    TOP = 2
    m.set_region(TOP,ftop)
    # Top-Left points and faces
    cleft = (abs(allPoints[1,:]) < 1e-6)
    clefttop=cleft*ctop
    pidlefttop = np.compress(clefttop,list(range(0,m.nbpts())))
    flefttop = m.faces_from_pid(pidlefttop)
    pidleft = np.compress(cleft,list(range(0,m.nbpts())))
    fleft= m.faces_from_pid(pidleft)
    LEFTTOP = 3
    m.set_region(LEFTTOP,flefttop)
    LEFT = 4
    m.set_region(LEFT,fleft)
    
    ############################
    # Assembly
    ############################
    nbd =  mfd.nbdof()
    # Stiffness matrix
    sico.Stiff=gf.asm_linear_elasticity(mim, mfu, mfd,np.repeat([Lambda], nbd), np.repeat([Mu], nbd))
    # Mass matrix
    sico.Mass=Rho*gf.asm_mass_matrix(mim, mfu)
    # Right-hand side
    Ftop = gf.asm_boundary_source(TOP, mim, mfu, mfd, np.repeat([[0],[0],[-1]],nbd,1))
    Fleft= gf.asm_boundary_source(LEFT, mim, mfu, mfd, np.repeat([[0],[10],[0]],nbd,1))
    sico.RHS = Ftop + Fleft

    sico.nbdof = mfu.nbdof()
    sico.q0 = mfu.basic_dof_from_cvid()
    
    sico.bot = pidbot
    

    # H-Matrix 
    fillH(pidbot,sico,mfu.nbdof())
    return m
Example #5
0
def import_fem2(sico):
    """ Build a mesh object using getfem.
    
    We use getfem++ to build the finite element model and
    to fill in the operators required by siconos:
    - the mass matrix (Mass)
    - the stiffness matrix (Stiff)
    - the matrix that links global coordinates and local coord. at contact points (H)
    
    """
    ############################
    # The geometry and the mesh
    ############################
    dimX = 10.01
    dimY = 10.01
    dimZ = 10.01
    stepX = 1.0
    stepY = 1.0
    stepZ = 1.0
    x = np.arange(0, dimX, stepX)
    y = np.arange(0, dimY, stepY)
    z = np.arange(0, dimZ, stepZ)
    m = gf.Mesh('regular simplices', x, y, z)
    m.set('optimize_structure')
    # Export the mesh to vtk
    m.export_to_vtk("BlockMesh.vtk")

    # Create MeshFem objects
    # (i.e. assign elements onto the mesh for each variable)
    mfu = gf.MeshFem(m, 3)  # displacement
    mfd = gf.MeshFem(m, 1)  # data
    mff = gf.MeshFem(m, 1)  # for plot von-mises
    # assign the FEM
    mfu.set_fem(gf.Fem('FEM_PK(3,1)'))
    mfd.set_fem(gf.Fem('FEM_PK(3,0)'))
    mff.set_fem(gf.Fem('FEM_PK_DISCONTINUOUS(3,1,0.01)'))
    # mfu.export_to_vtk("BlockMeshDispl.vtk")

    # Set the integration method
    mim = gf.MeshIm(m, gf.Integ('IM_TETRAHEDRON(5)'))

    # Summary
    print(' ==================================== \n Mesh details: ')
    print(' Problem dimension:', mfu.qdim(), '\n Number of elements: ',
          m.nbcvs(), '\n Number of nodes: ', m.nbpts())
    print(' Number of dof: ', mfu.nbdof(), '\n Element type: ',
          mfu.fem()[0].char())
    print(' ====================================')

    ###########################
    # Set the parameters
    # for the constitutive law
    ###########################
    E = 1e3  # Young modulus
    Nu = 0.3  # Poisson coef.
    # Lame coeff.
    Lambda = E * Nu / ((1 + Nu) * (1 - 2 * Nu))
    Mu = E / (2 * (1 + Nu))
    # Density
    Rho = 7800
    ############################
    # Boundaries detection
    ############################
    allPoints = m.pts()
    # Bottom points and faces
    cbot = (abs(allPoints[2, :]) < 1e-6)
    pidbot = np.compress(cbot, list(range(0, m.nbpts())))
    fbot = m.faces_from_pid(pidbot)
    BOTTOM = 1
    m.set_region(BOTTOM, fbot)
    # Top points and faces
    ctop = (abs(allPoints[2, :]) > dimZ - stepZ)
    pidtop = np.compress(ctop, list(range(0, m.nbpts())))
    ftop = m.faces_from_pid(pidtop)
    TOP = 2
    m.set_region(TOP, ftop)
    # Top-Left points and faces
    cleft = (abs(allPoints[1, :]) < 1e-6)
    clefttop = cleft * ctop
    pidlefttop = np.compress(clefttop, list(range(0, m.nbpts())))
    flefttop = m.faces_from_pid(pidlefttop)
    pidleft = np.compress(cleft, list(range(0, m.nbpts())))
    fleft = m.faces_from_pid(pidleft)
    LEFTTOP = 3
    m.set_region(LEFTTOP, flefttop)
    LEFT = 4
    m.set_region(LEFT, fleft)

    ############################
    # Assembly
    ############################
    nbd = mfd.nbdof()
    # Stiffness matrix
    sico.Stiff = gf.asm_linear_elasticity(mim, mfu, mfd,
                                          np.repeat([Lambda], nbd),
                                          np.repeat([Mu], nbd))
    # Mass matrix
    sico.Mass = Rho * gf.asm_mass_matrix(mim, mfu)
    # Right-hand side
    Ftop = gf.asm_boundary_source(TOP, mim, mfu, mfd,
                                  np.repeat([[0], [0], [-1]], nbd, 1))
    Fleft = gf.asm_boundary_source(LEFT, mim, mfu, mfd,
                                   np.repeat([[0], [10], [0]], nbd, 1))
    sico.RHS = Ftop + Fleft

    sico.nbdof = mfu.nbdof()
    sico.q0 = mfu.basic_dof_from_cvid()

    sico.bot = pidbot

    # H-Matrix
    fillH(pidbot, sico, mfu.nbdof())
    return m