def test_get_latlng_centroid(self):
        """Ensures correct output from _get_latlng_centroid."""

        (this_centroid_lat_deg,
         this_centroid_lng_deg) = polygons.get_latlng_centroid(
             LATITUDE_POINTS_DEG, LONGITUDE_POINTS_DEG)

        self.assertTrue(
            numpy.isclose(this_centroid_lat_deg,
                          CENTROID_LAT_DEG,
                          atol=TOLERANCE))
        self.assertTrue(
            numpy.isclose(this_centroid_lng_deg,
                          CENTROID_LNG_DEG,
                          atol=TOLERANCE))
def _init_azimuthal_equidistant_projection(storm_centroid_latitudes_deg,
                                           storm_centroid_longitudes_deg):
    """Initializes azimuthal equidistant projection.

    This projection will be centered at the "global centroid" (centroid of
    centroids) of all storm objects.

    N = number of storm objects

    :param storm_centroid_latitudes_deg: length-N numpy array with latitudes
        (deg N) of storm centroids.
    :param storm_centroid_longitudes_deg: length-N numpy array with longitudes
        (deg E) of storm centroids.
    :return: projection_object: Instance of `pyproj.Proj`, which can be used to
        convert between lat-long and x-y coordinates.
    """

    (global_centroid_lat_deg,
     global_centroid_lng_deg) = polygons.get_latlng_centroid(
         storm_centroid_latitudes_deg, storm_centroid_longitudes_deg)

    return projections.init_azimuthal_equidistant_projection(
        global_centroid_lat_deg, global_centroid_lng_deg)
Example #3
0
def read_polygons_from_netcdf(netcdf_file_name,
                              metadata_dict=None,
                              spc_date_unix_sec=None,
                              tracking_start_time_unix_sec=None,
                              tracking_end_time_unix_sec=None,
                              raise_error_if_fails=True):
    """Reads storm polygons (outlines of storm cells) from NetCDF file.

    P = number of grid points in storm cell (different for each storm cell)
    V = number of vertices in storm polygon (different for each storm cell)

    If file cannot be opened, returns None.

    :param netcdf_file_name: Path to input file.
    :param metadata_dict: Dictionary with metadata for NetCDF file, created by
        `radar_io.read_metadata_from_raw_file`.
    :param spc_date_unix_sec: SPC date;
    :param tracking_start_time_unix_sec: Start time for tracking period.  This
        can be found by `get_start_end_times_for_spc_date`.
    :param tracking_end_time_unix_sec: End time for tracking period.  This can
        be found by `get_start_end_times_for_spc_date`.
    :param raise_error_if_fails: Boolean flag.  If True and file cannot be
        opened, this method will raise an error.
    :return: polygon_table: If file cannot be opened and raise_error_if_fails =
        False, this is None.  Otherwise, it is a pandas DataFrame with the
        following columns.
    polygon_table.storm_id: String ID for storm cell.
    polygon_table.unix_time_sec: Time in Unix format.
    polygon_table.spc_date_unix_sec: SPC date in Unix format.
    polygon_table.tracking_start_time_unix_sec: Start time for tracking period.
    polygon_table.tracking_end_time_unix_sec: End time for tracking period.
    polygon_table.centroid_lat_deg: Latitude at centroid of storm cell (deg N).
    polygon_table.centroid_lng_deg: Longitude at centroid of storm cell (deg E).
    polygon_table.grid_point_latitudes_deg: length-P numpy array with latitudes
        (deg N) of grid points in storm cell.
    polygon_table.grid_point_longitudes_deg: length-P numpy array with
        longitudes (deg E) of grid points in storm cell.
    polygon_table.grid_point_rows: length-P numpy array with row indices (all
        integers) of grid points in storm cell.
    polygon_table.grid_point_columns: length-P numpy array with column indices
        (all integers) of grid points in storm cell.
    polygon_table.polygon_object_latlng: Instance of `shapely.geometry.Polygon`
        with vertices in lat-long coordinates.
    polygon_table.polygon_object_rowcol: Instance of `shapely.geometry.Polygon`
        with vertices in row-column coordinates.
    """

    error_checking.assert_file_exists(netcdf_file_name)
    error_checking.assert_is_integer(spc_date_unix_sec)
    error_checking.assert_is_not_nan(spc_date_unix_sec)
    error_checking.assert_is_integer(tracking_start_time_unix_sec)
    error_checking.assert_is_not_nan(tracking_start_time_unix_sec)
    error_checking.assert_is_integer(tracking_end_time_unix_sec)
    error_checking.assert_is_not_nan(tracking_end_time_unix_sec)

    netcdf_dataset = netcdf_io.open_netcdf(netcdf_file_name,
                                           raise_error_if_fails)
    if netcdf_dataset is None:
        return None

    storm_id_var_name = metadata_dict[radar_io.FIELD_NAME_COLUMN]
    storm_id_var_name_orig = metadata_dict[radar_io.FIELD_NAME_COLUMN_ORIG]
    num_values = len(netcdf_dataset.variables[radar_io.GRID_ROW_COLUMN_ORIG])

    if num_values == 0:
        sparse_grid_dict = {
            radar_io.GRID_ROW_COLUMN: numpy.array([], dtype=int),
            radar_io.GRID_COLUMN_COLUMN: numpy.array([], dtype=int),
            radar_io.NUM_GRID_CELL_COLUMN: numpy.array([], dtype=int),
            storm_id_var_name: numpy.array([], dtype=int)
        }
    else:
        sparse_grid_dict = {
            radar_io.GRID_ROW_COLUMN:
            netcdf_dataset.variables[radar_io.GRID_ROW_COLUMN_ORIG][:],
            radar_io.GRID_COLUMN_COLUMN:
            netcdf_dataset.variables[radar_io.GRID_COLUMN_COLUMN_ORIG][:],
            radar_io.NUM_GRID_CELL_COLUMN:
            netcdf_dataset.variables[radar_io.NUM_GRID_CELL_COLUMN_ORIG][:],
            storm_id_var_name:
            netcdf_dataset.variables[storm_id_var_name_orig][:]
        }

    netcdf_dataset.close()
    sparse_grid_table = pandas.DataFrame.from_dict(sparse_grid_dict)
    numeric_storm_id_matrix, _, _ = (radar_s2f.sparse_to_full_grid(
        sparse_grid_table, metadata_dict))
    polygon_table = _storm_id_matrix_to_coord_lists(numeric_storm_id_matrix)

    num_storms = len(polygon_table.index)
    unix_times_sec = numpy.full(num_storms,
                                metadata_dict[radar_io.UNIX_TIME_COLUMN],
                                dtype=int)
    spc_dates_unix_sec = numpy.full(num_storms, spc_date_unix_sec, dtype=int)
    tracking_start_times_unix_sec = numpy.full(num_storms,
                                               tracking_start_time_unix_sec,
                                               dtype=int)
    tracking_end_times_unix_sec = numpy.full(num_storms,
                                             tracking_end_time_unix_sec,
                                             dtype=int)

    spc_date_string = time_conversion.time_to_spc_date_string(
        spc_date_unix_sec)
    storm_ids = _append_spc_date_to_storm_ids(
        polygon_table[tracking_io.STORM_ID_COLUMN].values, spc_date_string)

    simple_array = numpy.full(num_storms, numpy.nan)
    object_array = numpy.full(num_storms, numpy.nan, dtype=object)
    nested_array = polygon_table[[
        tracking_io.STORM_ID_COLUMN, tracking_io.STORM_ID_COLUMN
    ]].values.tolist()

    argument_dict = {
        tracking_io.STORM_ID_COLUMN: storm_ids,
        tracking_io.TIME_COLUMN: unix_times_sec,
        tracking_io.SPC_DATE_COLUMN: spc_dates_unix_sec,
        tracking_io.TRACKING_START_TIME_COLUMN: tracking_start_times_unix_sec,
        tracking_io.TRACKING_END_TIME_COLUMN: tracking_end_times_unix_sec,
        tracking_io.CENTROID_LAT_COLUMN: simple_array,
        tracking_io.CENTROID_LNG_COLUMN: simple_array,
        tracking_io.GRID_POINT_LAT_COLUMN: nested_array,
        tracking_io.GRID_POINT_LNG_COLUMN: nested_array,
        tracking_io.POLYGON_OBJECT_LATLNG_COLUMN: object_array,
        tracking_io.POLYGON_OBJECT_ROWCOL_COLUMN: object_array
    }
    polygon_table = polygon_table.assign(**argument_dict)

    for i in range(num_storms):
        these_vertex_rows, these_vertex_columns = (
            polygons.grid_points_in_poly_to_vertices(
                polygon_table[tracking_io.GRID_POINT_ROW_COLUMN].values[i],
                polygon_table[tracking_io.GRID_POINT_COLUMN_COLUMN].values[i]))

        (polygon_table[tracking_io.GRID_POINT_ROW_COLUMN].values[i],
         polygon_table[tracking_io.GRID_POINT_COLUMN_COLUMN].values[i]) = (
             polygons.simple_polygon_to_grid_points(these_vertex_rows,
                                                    these_vertex_columns))

        (polygon_table[tracking_io.GRID_POINT_LAT_COLUMN].values[i],
         polygon_table[tracking_io.GRID_POINT_LNG_COLUMN].values[i]) = (
             radar_io.rowcol_to_latlng(
                 polygon_table[tracking_io.GRID_POINT_ROW_COLUMN].values[i],
                 polygon_table[tracking_io.GRID_POINT_COLUMN_COLUMN].values[i],
                 nw_grid_point_lat_deg=metadata_dict[
                     radar_io.NW_GRID_POINT_LAT_COLUMN],
                 nw_grid_point_lng_deg=metadata_dict[
                     radar_io.NW_GRID_POINT_LNG_COLUMN],
                 lat_spacing_deg=metadata_dict[radar_io.LAT_SPACING_COLUMN],
                 lng_spacing_deg=metadata_dict[radar_io.LNG_SPACING_COLUMN]))

        these_vertex_lat_deg, these_vertex_lng_deg = radar_io.rowcol_to_latlng(
            these_vertex_rows,
            these_vertex_columns,
            nw_grid_point_lat_deg=metadata_dict[
                radar_io.NW_GRID_POINT_LAT_COLUMN],
            nw_grid_point_lng_deg=metadata_dict[
                radar_io.NW_GRID_POINT_LNG_COLUMN],
            lat_spacing_deg=metadata_dict[radar_io.LAT_SPACING_COLUMN],
            lng_spacing_deg=metadata_dict[radar_io.LNG_SPACING_COLUMN])

        (polygon_table[tracking_io.CENTROID_LAT_COLUMN].values[i],
         polygon_table[tracking_io.CENTROID_LNG_COLUMN].values[i]) = (
             polygons.get_latlng_centroid(these_vertex_lat_deg,
                                          these_vertex_lng_deg))

        polygon_table[tracking_io.POLYGON_OBJECT_ROWCOL_COLUMN].values[i] = (
            polygons.vertex_arrays_to_polygon_object(these_vertex_columns,
                                                     these_vertex_rows))
        polygon_table[tracking_io.POLYGON_OBJECT_LATLNG_COLUMN].values[i] = (
            polygons.vertex_arrays_to_polygon_object(these_vertex_lng_deg,
                                                     these_vertex_lat_deg))

    return polygon_table
Example #4
0
def make_buffers_around_polygons(storm_object_table,
                                 min_buffer_dists_metres=None,
                                 max_buffer_dists_metres=None):
    """Creates one or more buffers around each storm polygon.

    N = number of buffers
    V = number of vertices in a given polygon

    :param storm_object_table: pandas DataFrame with the following columns.
    storm_object_table.storm_id: String ID for storm cell.
    storm_object_table.polygon_object_latlng: Instance of
        `shapely.geometry.Polygon`, with vertices in lat-long coordinates.
    :param min_buffer_dists_metres: length-N numpy array of minimum buffer
        distances.  If min_buffer_dists_metres[i] is NaN, the [i]th buffer
        includes the original polygon.  If min_buffer_dists_metres[i] is
        defined, the [i]th buffer is a "nested" buffer, not including the
        original polygon.
    :param max_buffer_dists_metres: length-N numpy array of maximum buffer
        distances.  Must be all real numbers (no NaN).
    :return: storm_object_table: Same as input, but with N extra columns.
    storm_object_table.polygon_object_latlng_buffer_<D>m: Instance of
        `shapely.geometry.Polygon` for D-metre buffer around storm.
    storm_object_table.polygon_object_latlng_buffer_<d>_<D>m: Instance of
        `shapely.geometry.Polygon` for d-to-D-metre buffer around storm.
    """

    error_checking.assert_is_geq_numpy_array(min_buffer_dists_metres,
                                             0.,
                                             allow_nan=True)
    error_checking.assert_is_numpy_array(min_buffer_dists_metres,
                                         num_dimensions=1)

    num_buffers = len(min_buffer_dists_metres)
    error_checking.assert_is_geq_numpy_array(max_buffer_dists_metres,
                                             0.,
                                             allow_nan=False)
    error_checking.assert_is_numpy_array(max_buffer_dists_metres,
                                         exact_dimensions=numpy.array(
                                             [num_buffers]))

    for j in range(num_buffers):
        if numpy.isnan(min_buffer_dists_metres[j]):
            continue
        error_checking.assert_is_greater(max_buffer_dists_metres[j],
                                         min_buffer_dists_metres[j],
                                         allow_nan=False)

    num_storm_objects = len(storm_object_table.index)
    centroid_latitudes_deg = numpy.full(num_storm_objects, numpy.nan)
    centroid_longitudes_deg = numpy.full(num_storm_objects, numpy.nan)

    for i in range(num_storm_objects):
        this_centroid_object = storm_object_table[
            POLYGON_OBJECT_LATLNG_COLUMN].values[0].centroid
        centroid_latitudes_deg[i] = this_centroid_object.y
        centroid_longitudes_deg[i] = this_centroid_object.x

    global_centroid_lat_deg, global_centroid_lng_deg = (
        polygons.get_latlng_centroid(centroid_latitudes_deg,
                                     centroid_longitudes_deg))
    projection_object = projections.init_azimuthal_equidistant_projection(
        global_centroid_lat_deg, global_centroid_lng_deg)

    object_array = numpy.full(num_storm_objects, numpy.nan, dtype=object)
    argument_dict = {}
    buffer_column_names = [''] * num_buffers

    for j in range(num_buffers):
        buffer_column_names[j] = distance_buffer_to_column_name(
            min_buffer_dists_metres[j], max_buffer_dists_metres[j])
        argument_dict.update({buffer_column_names[j]: object_array})
    storm_object_table = storm_object_table.assign(**argument_dict)

    for i in range(num_storm_objects):
        orig_vertex_dict_latlng = polygons.polygon_object_to_vertex_arrays(
            storm_object_table[POLYGON_OBJECT_LATLNG_COLUMN].values[i])

        (orig_vertex_x_metres,
         orig_vertex_y_metres) = projections.project_latlng_to_xy(
             orig_vertex_dict_latlng[polygons.EXTERIOR_Y_COLUMN],
             orig_vertex_dict_latlng[polygons.EXTERIOR_X_COLUMN],
             projection_object=projection_object)

        for j in range(num_buffers):
            buffer_polygon_object_xy = polygons.buffer_simple_polygon(
                orig_vertex_x_metres,
                orig_vertex_y_metres,
                min_buffer_dist_metres=min_buffer_dists_metres[j],
                max_buffer_dist_metres=max_buffer_dists_metres[j])

            buffer_vertex_dict = polygons.polygon_object_to_vertex_arrays(
                buffer_polygon_object_xy)

            (buffer_vertex_dict[polygons.EXTERIOR_Y_COLUMN],
             buffer_vertex_dict[polygons.EXTERIOR_X_COLUMN]) = (
                 projections.project_xy_to_latlng(
                     buffer_vertex_dict[polygons.EXTERIOR_X_COLUMN],
                     buffer_vertex_dict[polygons.EXTERIOR_Y_COLUMN],
                     projection_object=projection_object))

            this_num_holes = len(buffer_vertex_dict[polygons.HOLE_X_COLUMN])
            for k in range(this_num_holes):
                (buffer_vertex_dict[polygons.HOLE_Y_COLUMN][k],
                 buffer_vertex_dict[polygons.HOLE_X_COLUMN][k]) = (
                     projections.project_xy_to_latlng(
                         buffer_vertex_dict[polygons.HOLE_X_COLUMN][k],
                         buffer_vertex_dict[polygons.HOLE_Y_COLUMN][k],
                         projection_object=projection_object))

            buffer_polygon_object_latlng = (
                polygons.vertex_arrays_to_polygon_object(
                    buffer_vertex_dict[polygons.EXTERIOR_X_COLUMN],
                    buffer_vertex_dict[polygons.EXTERIOR_Y_COLUMN],
                    hole_x_coords_list=buffer_vertex_dict[
                        polygons.HOLE_X_COLUMN],
                    hole_y_coords_list=buffer_vertex_dict[
                        polygons.HOLE_Y_COLUMN]))

            storm_object_table[buffer_column_names[j]].values[
                i] = buffer_polygon_object_latlng

    return storm_object_table
def read_storm_objects_from_raw_file(json_file_name):
    """Reads storm objects from raw file.

    This file should contain all storm objects for one tracking scale and one
    time step.

    P = number of grid points in given storm object
    V = number of vertices in bounding polygon of given storm object

    :param json_file_name: Path to input file.
    :return: storm_object_table: pandas DataFrame with the following columns.
    storm_object_table.storm_id: String ID for storm cell.
    storm_object_table.unix_time_sec: Time in Unix format.
    storm_object_table.spc_date_unix_sec: SPC date in Unix format.
    storm_object_table.tracking_start_time_unix_sec: Start time for tracking
        period.
    storm_object_table.tracking_end_time_unix_sec: End time for tracking
        period.
    storm_object_table.east_velocity_m_s01: Eastward velocity (m/s).
    storm_object_table.north_velocity_m_s01: Northward velocity (m/s).
    storm_object_table.age_sec: Age of storm cell (seconds).
    storm_object_table.centroid_lat_deg: Latitude at centroid of storm object
        (deg N).
    storm_object_table.centroid_lng_deg: Longitude at centroid of storm object
        (deg E).
    storm_object_table.grid_point_latitudes_deg: length-P numpy array with
        latitudes (deg N) of grid points in storm object.
    storm_object_table.grid_point_longitudes_deg: length-P numpy array with
        longitudes (deg E) of grid points in storm object.
    storm_object_table.grid_point_rows: length-P numpy array with row indices
        (integers) of grid points in storm object.
    storm_object_table.grid_point_columns: length-P numpy array with column
        indices (integers) of grid points in storm object.
    storm_object_table.polygon_object_latlng: Instance of
        `shapely.geometry.Polygon` with vertices in lat-long coordinates.
    storm_object_table.polygon_object_rowcol: Instance of
        `shapely.geometry.Polygon` with vertices in row-column coordinates.
    """

    error_checking.assert_file_exists(json_file_name)
    with open(json_file_name) as json_file_handle:
        probsevere_dict = json.load(json_file_handle)

    unix_time_sec = time_conversion.string_to_unix_sec(
        probsevere_dict[TIME_COLUMN_ORIG].encode('ascii', 'ignore'),
        TIME_FORMAT_IN_RAW_FILES)
    spc_date_unix_sec = time_conversion.time_to_spc_date_unix_sec(unix_time_sec)

    num_storms = len(probsevere_dict[FEATURES_COLUMN_ORIG])
    unix_times_sec = numpy.full(num_storms, unix_time_sec, dtype=int)
    spc_dates_unix_sec = numpy.full(num_storms, spc_date_unix_sec, dtype=int)
    tracking_start_times_unix_sec = numpy.full(
        num_storms, TRACKING_START_TIME_UNIX_SEC, dtype=int)
    tracking_end_times_unix_sec = numpy.full(
        num_storms, TRACKING_END_TIME_UNIX_SEC, dtype=int)

    storm_ids = [None] * num_storms
    east_velocities_m_s01 = numpy.full(num_storms, numpy.nan)
    north_velocities_m_s01 = numpy.full(num_storms, numpy.nan)

    for i in range(num_storms):
        storm_ids[i] = str(
            probsevere_dict[FEATURES_COLUMN_ORIG][i][PROPERTIES_COLUMN_ORIG][
                STORM_ID_COLUMN_ORIG])
        east_velocities_m_s01[i] = float(
            probsevere_dict[FEATURES_COLUMN_ORIG][i][PROPERTIES_COLUMN_ORIG][
                EAST_VELOCITY_COLUMN_ORIG])
        north_velocities_m_s01[i] = -1 * float(
            probsevere_dict[FEATURES_COLUMN_ORIG][i][PROPERTIES_COLUMN_ORIG][
                NORTH_VELOCITY_COLUMN_ORIG])

    storm_object_dict = {
        tracking_io.STORM_ID_COLUMN: storm_ids,
        tracking_io.EAST_VELOCITY_COLUMN: east_velocities_m_s01,
        tracking_io.NORTH_VELOCITY_COLUMN: north_velocities_m_s01,
        tracking_io.TIME_COLUMN: unix_times_sec,
        tracking_io.SPC_DATE_COLUMN: spc_dates_unix_sec,
        tracking_io.TRACKING_START_TIME_COLUMN: tracking_start_times_unix_sec,
        tracking_io.TRACKING_END_TIME_COLUMN: tracking_end_times_unix_sec}
    storm_object_table = pandas.DataFrame.from_dict(storm_object_dict)
    storm_object_table = tracking_io.remove_rows_with_nan(storm_object_table)

    num_storms = len(storm_object_table.index)
    storm_ages_sec = numpy.full(num_storms, numpy.nan)

    simple_array = numpy.full(num_storms, numpy.nan)
    object_array = numpy.full(num_storms, numpy.nan, dtype=object)
    nested_array = storm_object_table[[
        tracking_io.STORM_ID_COLUMN,
        tracking_io.STORM_ID_COLUMN]].values.tolist()

    argument_dict = {tracking_io.AGE_COLUMN: storm_ages_sec,
                     tracking_io.CENTROID_LAT_COLUMN: simple_array,
                     tracking_io.CENTROID_LNG_COLUMN: simple_array,
                     tracking_io.GRID_POINT_LAT_COLUMN: nested_array,
                     tracking_io.GRID_POINT_LNG_COLUMN: nested_array,
                     tracking_io.GRID_POINT_ROW_COLUMN: nested_array,
                     tracking_io.GRID_POINT_COLUMN_COLUMN: nested_array,
                     tracking_io.POLYGON_OBJECT_LATLNG_COLUMN: object_array,
                     tracking_io.POLYGON_OBJECT_ROWCOL_COLUMN: object_array}
    storm_object_table = storm_object_table.assign(**argument_dict)

    for i in range(num_storms):
        this_vertex_matrix_deg = numpy.asarray(
            probsevere_dict[FEATURES_COLUMN_ORIG][i][GEOMETRY_COLUMN_ORIG][
                COORDINATES_COLUMN_ORIG][0])
        these_vertex_lat_deg = this_vertex_matrix_deg[:, LAT_COLUMN_INDEX_ORIG]
        these_vertex_lng_deg = this_vertex_matrix_deg[:, LNG_COLUMN_INDEX_ORIG]

        (these_vertex_rows, these_vertex_columns) = radar_io.latlng_to_rowcol(
            these_vertex_lat_deg, these_vertex_lng_deg,
            nw_grid_point_lat_deg=NW_GRID_POINT_LAT_DEG,
            nw_grid_point_lng_deg=NW_GRID_POINT_LNG_DEG,
            lat_spacing_deg=GRID_LAT_SPACING_DEG,
            lng_spacing_deg=GRID_LNG_SPACING_DEG)

        these_vertex_rows, these_vertex_columns = (
            polygons.fix_probsevere_vertices(
                these_vertex_rows, these_vertex_columns))

        these_vertex_lat_deg, these_vertex_lng_deg = radar_io.rowcol_to_latlng(
            these_vertex_rows, these_vertex_columns,
            nw_grid_point_lat_deg=NW_GRID_POINT_LAT_DEG,
            nw_grid_point_lng_deg=NW_GRID_POINT_LNG_DEG,
            lat_spacing_deg=GRID_LAT_SPACING_DEG,
            lng_spacing_deg=GRID_LNG_SPACING_DEG)

        (storm_object_table[tracking_io.GRID_POINT_ROW_COLUMN].values[i],
         storm_object_table[tracking_io.GRID_POINT_COLUMN_COLUMN].values[i]) = (
             polygons.simple_polygon_to_grid_points(
                 these_vertex_rows, these_vertex_columns))

        (storm_object_table[tracking_io.GRID_POINT_LAT_COLUMN].values[i],
         storm_object_table[tracking_io.GRID_POINT_LNG_COLUMN].values[i]) = (
             radar_io.rowcol_to_latlng(
                 storm_object_table[tracking_io.GRID_POINT_ROW_COLUMN].values[i],
                 storm_object_table[
                     tracking_io.GRID_POINT_COLUMN_COLUMN].values[i],
                 nw_grid_point_lat_deg=NW_GRID_POINT_LAT_DEG,
                 nw_grid_point_lng_deg=NW_GRID_POINT_LNG_DEG,
                 lat_spacing_deg=GRID_LAT_SPACING_DEG,
                 lng_spacing_deg=GRID_LNG_SPACING_DEG))

        (storm_object_table[tracking_io.CENTROID_LAT_COLUMN].values[i],
         storm_object_table[tracking_io.CENTROID_LNG_COLUMN].values[i]) = (
             polygons.get_latlng_centroid(
                 these_vertex_lat_deg, these_vertex_lng_deg))

        storm_object_table[
            tracking_io.POLYGON_OBJECT_ROWCOL_COLUMN].values[i] = (
                polygons.vertex_arrays_to_polygon_object(
                    these_vertex_columns, these_vertex_rows))
        storm_object_table[
            tracking_io.POLYGON_OBJECT_LATLNG_COLUMN].values[i] = (
                polygons.vertex_arrays_to_polygon_object(
                    these_vertex_lng_deg, these_vertex_lat_deg))

    return storm_object_table
        tracking_io.
        GRID_POINT_COLUMN_COLUMN].values[i] = GRID_POINT_COLUMNS_BY_STORM[i]

    THESE_VERTEX_ROWS, THESE_VERTEX_COLUMNS = (
        polygons.grid_points_in_poly_to_vertices(
            GRID_POINT_ROWS_BY_STORM[i], GRID_POINT_COLUMNS_BY_STORM[i]))

    THESE_VERTEX_LATITUDES_DEG, THESE_VERTEX_LONGITUDES_DEG = (
        radar_io.rowcol_to_latlng(THESE_VERTEX_ROWS,
                                  THESE_VERTEX_COLUMNS,
                                  nw_grid_point_lat_deg=NW_GRID_POINT_LAT_DEG,
                                  nw_grid_point_lng_deg=NW_GRID_POINT_LNG_DEG,
                                  lat_spacing_deg=LATITUDE_SPACING_DEG,
                                  lng_spacing_deg=LONGITUDE_SPACING_DEG))

    THIS_CENTROID_LAT_DEG, THIS_CENTROID_LNG_DEG = polygons.get_latlng_centroid(
        THESE_VERTEX_LATITUDES_DEG, THESE_VERTEX_LONGITUDES_DEG)

    STORM_OBJECT_TABLE_SMALL_SCALE[
        tracking_io.CENTROID_LAT_COLUMN].values[i] = THIS_CENTROID_LAT_DEG
    STORM_OBJECT_TABLE_SMALL_SCALE[
        tracking_io.CENTROID_LNG_COLUMN].values[i] = THIS_CENTROID_LNG_DEG

    STORM_OBJECT_TABLE_SMALL_SCALE[
        tracking_io.POLYGON_OBJECT_LATLNG_COLUMN].values[i] = (
            polygons.vertex_arrays_to_polygon_object(
                THESE_VERTEX_LONGITUDES_DEG, THESE_VERTEX_LATITUDES_DEG))
    STORM_OBJECT_TABLE_SMALL_SCALE[
        tracking_io.POLYGON_OBJECT_ROWCOL_COLUMN].values[i] = (
            polygons.vertex_arrays_to_polygon_object(THESE_VERTEX_COLUMNS,
                                                     THESE_VERTEX_ROWS))