exc, force_replace=True, win=10) # %% pns = dataloc.raw_csv(newbase, inc[0], exc[0]) if not isinstance(pns, list): pns = [pns] saveit = True closeit = True for pn in pns: df, meta = ethovision_tools.csv_load(pn, columns='All', method='preproc') plots.plot_openloop_day(df, meta, save=saveit, close=closeit, save_dir=pn.parent) # %% analysis = 'Str_A2a_ChR2_1mw' behavior_str = '10x' fn = '%s_openloop_data' % analysis qans = [ 'AG3233_5', 'AG3233_4', 'AG3488_7', ] inc, exc, color, example_mouse = dataloc.experiment_selector(
ethovision_tools.unify_raw_to_csv(basepath, inc, exc, force_replace=False, win=10) ethovision_tools.raw_csv_to_preprocessed_csv(basepath, inc, exc, force_replace=False, win=10) for ii, ee in zip(inc, exc): pns = dataloc.raw_csv(basepath, ii, ee) for pn in pns: temp = {} raw, meta = ethovision_tools.csv_load(pn, method='preproc') plots.plot_openloop_day(raw, meta) # %% # def test_batch_analyze(inc,exc): data = pd.DataFrame([], columns=[ 'anid', 'proto', 'cell_area_opsin', 'amb_vel', 'amb_meander', 'amb_bouts', 'amb_directed' ]) temp = data min_bout = 1 use_dlc = False use_cols = ['time', 'vel', 'im', 'dir', 'ambulation', 'meander'] for ii, ee in zip(inc, exc): pns = dataloc.raw_csv(basepath, ii, ee)
inc = [ [ 'AG', '10x10_gpe_pbs', ], ] exc = [ex0] basepath = '/home/brian/Dropbox/Gittis Lab Data/OptoBehavior/' for ii, ee in zip(inc, exc): pns = dataloc.raw_csv(basepath, ii, ee) for pn in pns: temp = {} raw, meta = ethovision_tools.csv_load(pn, method='preproc') plots.plot_openloop_day(raw, meta, save=True, close=False) # %% Combined openloop day summary: inc = [ [ 'AG', '10x10_gpe_pbs', ], ] exc = [[ 'exclude', 'and_GPe', 'and_Str', 'Left', 'Right', 'Other XLS', 'Exclude', 'mW', 'mw', 'AG6343' ]] data = behavior.open_loop_summary_collect(basepath, [inc[0]], [exc[0]]) # %% fig = plots.plot_openloop_mouse_summary(data)
import time # %% Plot one 10x30 experiment day inc = [['AG', 'Str', 'A2A', 'Ai32', 'hm4di_cno', '10x10']] exc = [['exclude', '_and_Str', 'Left', 'Right', 'Other XLS', 'Exclude']] basepath = '/home/brian/Dropbox/Gittis Lab Data/OptoBehavior/' pns = dataloc.raw_csv(basepath, inc[0], exc[0]) # a=time.time() df, meta = ethovision_tools.csv_load(pns[2], columns='All', method='raw') df, meta = behavior.preproc_raw(df, meta) # b=time.time() print('%2.2f seconds to load' % (b - a)) # raw=ethovision_tools.add_amb_to_raw(raw,meta) #The magic: plots.plot_openloop_day(df, meta, save=True) # %% Debug new metric: meander #DLC Measure: dir_smooth = behavior.smooth_direction(raw, meta, use_dlc=True) dir_smooth_etho = behavior.smooth_direction(raw, meta) diff_angle = signal.angle_vector_delta(dir_smooth[0:-1], dir_smooth[1:], thresh=20, fs=meta['fs'][0]) meander = behavior.measure_meander(raw, meta, use_dlc=True) dist = raw['vel'] * (1 / meta.fs[0]) plt.close('all') fig = plt.figure(figsize=(5, 10)) ax1 = plt.subplot(3, 1, 1)
# exc=[ex0] # inc=[['AG','Str','A2A','Ai32','10x10','0p25mw']] analysis = 'GPe_A2a_ChR2_2mw' b = '10x' inc, exc, color, example_mouse = dataloc.experiment_selector(analysis, behavior_str=b) inc = inc[1] + ['AG7192'] pns = dataloc.raw_csv(basepath, inc[0], exc[0]) if not isinstance(pns, list): pns = [pns] saveit = True closeit = False for pn in pns: df, meta = ethovision_tools.csv_load(pn, columns='All', method='preproc') plots.plot_openloop_day(df, meta, save=saveit, close=closeit) # %% Plot zone day # inc=[['AG','Str','A2A','Ai32','zone_2','_0p5mw']] analysis = 'GPe_A2a_ChR2_0p25mw' behavior_str = 'zone_' #'10x' inc, exc, color, example_mouse = dataloc.experiment_selector( analysis, behavior_str=behavior_str) inc[1] += ['AG7128'] pns = dataloc.raw_csv(basepath, inc[0], exc[0]) if not isinstance(pns, list): pns = [pns] saveit = True closeit = False