Example #1
0
    def run(self):
        ##### Create identifiers
        myconfig = self.config

        ##### Set network specifics
        # check if patch size isn't too large. If so make it smaller
        # patchsize = myconfig["Patch size"]
        patchsize = set_patch_size(myconfig)

        ##### Load model from source step
        loc_model = myconfig["Model path"]

        dataset = SingleInstanceDataset(
            myconfig['Nifti paths'],
            brainmask_path=myconfig['Brainmask path'],
            transform=ToTensor())
        dataloader = DataLoader(dataset,
                                batch_size=1,
                                num_workers=0,
                                shuffle=False)

        logDataLoader(dataloader, self.tmpdir)
        evaluator = StandardEvaluator.loadFromCheckpoint(loc_model)

        sample_batched = next(iter(dataloader))
        images = sample_batched["data"]

        header_sources = sample_batched["header_source"]
        resultpaths = [os.path.join(self.tmpdir, 'segmentation.nii.gz')]
        evaluator.segmentNifti(images, header_sources, patchsize, resultpaths)
        self.logger.info('Nifti image segmented for.')
        self.tearDown()
Example #2
0
    def run(self):
        ##### Create identifiers
        myconfig = self.config

        ##### Set network specifics
        patchsize = myconfig["Patch size"]
        batchsize = myconfig["Batch size"]
        output_type = myconfig["Output type"]
        only_first = myconfig["Only first"]

        #### Data specifics
        splits = myconfig["Splits"]

        ##### load datamanager
        loc = myconfig["Nifti Source"]
        if self.config['Dataset'] == 'Brats18':
            dataset = Brats18.fromFile(loc)
        elif self.config['Dataset'] == 'BTD':
            dataset = BTD.fromFile(loc)
        elif self.config['Dataset'] == 'Generic':
            dataset = GenericData.fromFile(loc)

        if "Splits from File" in myconfig:
            dataset.loadSplits(myconfig["Splits from File"])

        ##### Load model from source step
        sourcestep = myconfig["Model Source"]
        loc_model = os.path.join(self.datadir, sourcestep)
        config_model = self.loadConfig(os.path.join(loc_model, 'config.json'))
        sequences = config_model["Sequences"]

        transform = ToTensor()
        testset = dataset.getDataset(splits, sequences, transform=transform)
        dataloader = DataLoader(testset, batch_size=batchsize, num_workers=0, shuffle=True)

        evaluator = StandardEvaluator.loadFromCheckpoint(os.path.join(loc_model, 'model.pt'))
        self.logger.info('Dataloader has {n} images.'.format(n=len(testset)))

        for i_batch, sample_batched in enumerate(dataloader):
            images = sample_batched["data"]
            subjects = sample_batched["subject"]
            header_sources = sample_batched["header_source"]
            t1_sources = sample_batched["t1_source"]
            resultpaths = [os.path.join(self.tmpdir, s + '_segmented.nii.gz') for s in subjects]
            evaluator.segmentNifti(images, header_sources, patchsize, resultpaths)
            for i in range(0, len(subjects)):
                plotResultImageWithoutGT(t1_sources[i], resultpaths[i], self.tmpdir,
                                            subjects[i], output_type=output_type)
                self.logger.info('Nifti image segmented for {}.'.format(subjects[i]))
            if only_first: break
        self.tearDown()
Example #3
0
    def getDataloader(self):
        n_workers = self.config['Num Workers']
        batchsize = self.config['Batch size']
        sequences = self.config["Sequences"]
        loc = os.path.join(self.datadir, self.config["Nifti Source"])

        # locate, organize and split the dataset
        dataset = Brats18.fromFile(loc)

        #Data specifics
        splits = self.config['Splits']
        testsplits = self.config['Testsplits']
        dataset.saveSplits(self.tmpdir)
        targetsize = tuple(self.config["Patch size"])
        imgsize = targetsize

        # initialize input transforms
        transforms = [RandomCrop(output_size=imgsize), ToTensor()]
        transform = Compose(transforms)

        # prepare the training set loader
        trainset = dataset.getDataset(splits, sequences, transform=transform)
        trainset.saveListOfPatients(os.path.join(self.tmpdir, 'trainset.json'))
        self.logger.info('Generating patches with input size ' + str(imgsize) +
                         ' and outputsize ' + str(targetsize))
        trainloader = DataLoader(trainset,
                                 batch_size=batchsize,
                                 num_workers=n_workers,
                                 shuffle=True)

        # prepare the testing set loader
        if len(testsplits) > 0:
            testset = dataset.getDataset(testsplits,
                                         sequences,
                                         transform=transform)
            testloader = DataLoader(testset,
                                    batch_size=batchsize,
                                    num_workers=n_workers,
                                    shuffle=True)
        else:
            testloader = None

        # plot and save samples of a mini-batch
        logDataLoader(trainloader, self.tmpdir)

        return trainloader, testloader
Example #4
0
    def evaluate(self):
        # Create identifiers
        myconfig = self.config

        # Set network specifics
        patchsize = myconfig["Patch size"]
        batchsize = myconfig["Batch size"]
        output_type = myconfig["Output type"]
        only_first = myconfig["Only first"]
        sequences = myconfig["Sequences"]

        # Data specifics
        splits = myconfig["Testsplits"]

        # load data-manager
        loc = os.path.join(self.datadir, self.config["Nifti Source"])
        dataset = Brats18.fromFile(loc)

        transforms = [ToTensor()]
        transform = Compose(transforms)

        testset = dataset.getDataset(splits, sequences, transform=transform)
        dataloader = DataLoader(testset,
                                batch_size=batchsize,
                                num_workers=0,
                                shuffle=True)
        self.logger.info('Dataloader has {n} images.'.format(n=len(testset)))

        # Load model from source step
        sourcestep = self.name
        loc_model = os.path.join(self.datadir, sourcestep)
        evaluator = StandardEvaluator.loadFromCheckpoint(
            os.path.join(loc_model, 'model.pt'))

        all_dice = []
        all_dice_core = []
        all_dice_enhancing = []
        results = pd.DataFrame(columns=[
            'sample', 'subject', 'class', 'TP', 'FP', 'FN', 'TN', 'dice'
        ])
        for i_batch, sample_batched in enumerate(dataloader):
            images = sample_batched['data']
            segfiles = sample_batched['seg_file']
            subjects = sample_batched['subject']
            segs = sample_batched['seg']
            resultpaths = [
                os.path.join(self.tmpdir, s + '_segmented.nii.gz')
                for s in subjects
            ]
            uncertaintypaths = [
                os.path.join(self.tmpdir, s + '_epistimci.nii.gz')
                for s in subjects
            ]
            classifications, epistemicUncertainty = evaluator.segmentNifti(
                images, segfiles, patchsize, resultpaths, uncertaintypaths)
            for i in range(0, len(subjects)):
                seg = segs[i].numpy()
                plotResultImage(dataset,
                                resultpaths[i],
                                uncertaintypaths[i],
                                self.tmpdir,
                                subjects[i],
                                output_type=output_type)
                for c in range(0, 5):
                    truth = seg == c
                    positive = classifications[i] == c
                    (dice, TT, FP, FN,
                     TN) = getPerformanceMeasures(positive, truth)
                    results = results.append(
                        {
                            'sample': i_batch,
                            'class': c,
                            'subject': subjects[i],
                            'TP': TT,
                            'FP': FP,
                            'FN': FN,
                            'TN': TN,
                            'dice': dice
                        },
                        ignore_index=True)
                    if c == 4:
                        all_dice_enhancing.append(dice)
                class_whole = classifications[i] > 0
                result_core = (classifications[i] == 1) | (classifications[i]
                                                           == 4)
                truth_whole = seg > 0
                truth_core = (seg == 1) | (seg == 4)
                (dice, TT, FP, FN,
                 TN) = getPerformanceMeasures(class_whole, truth_whole)
                (dice_core, TT_core, FP_core, FN_core,
                 TN_core) = getPerformanceMeasures(result_core, truth_core)
                all_dice.append(dice)
                all_dice_core.append(dice_core)
                self.logger.info('Nifti image segmented for ' + subjects[i] +
                                 '. Dice: ' + str(dice))
                results = results.append(
                    {
                        'sample': i_batch,
                        'class': 'whole',
                        'subject': subjects[i],
                        'TP': TT,
                        'FP': FP,
                        'FN': FN,
                        'TN': TN,
                        'dice': dice
                    },
                    ignore_index=True)
                results = results.append(
                    {
                        'sample': i_batch,
                        'class': 'core',
                        'subject': subjects[i],
                        'TP': TT_core,
                        'FP': FP_core,
                        'FN': FN_core,
                        'TN': TN_core,
                        'dice': dice_core
                    },
                    ignore_index=True)
            if only_first: break

        dice_mean = sum(all_dice) / len(all_dice)
        dice_core = sum(all_dice_core) / len(all_dice_core)
        dice_enhancing = sum(all_dice_enhancing) / len(all_dice_enhancing)
        plt.boxplot(all_dice)
        plt.savefig(os.path.join(self.tmpdir, 'boxplot_dice.png'))
        plt.close()
        results.to_csv(os.path.join(self.tmpdir, 'results_eval.csv'))
        dataset.saveSplits(self.tmpdir)
        self.logger.info(
            'evaluation finished. Dice coefficient: whole: {}, core: {}, enhancing: {}'
            .format(dice_mean, dice_core, dice_enhancing))
    def getDataloader(self):
        batchsize = self.config['Batch size']
        loc = os.path.join(self.datadir, self.config["Nifti Source"])
        sequences = self.config[
            "Sequences"] if "Sequences" in self.config else None
        if self.config['Dataset'] == 'Brats18':
            dataset = Brats18.fromFile(loc)
        elif self.config['Dataset'] == 'BTD':
            if self.config['Brainmask'] == False:
                dataset = BTD.fromFile(loc, brainmask=False)
            else:
                dataset = BTD.fromFile(loc, brainmask=True)
        elif self.config['Dataset'] == 'Hippocampus':
            dataset = Hippocampus.fromFile(loc)

        if "Splits from File" in self.config:
            dataset.setSplits(self.config["Splits from File"])
        elif "Crossval Splits" in self.config:
            dataset.createCVSplits(self.config["Crossval Splits"])
        #### Data specifics
        splits = self.config['Splits']
        testsplits = self.config['Testsplits']
        dataset.saveSplits(self.tmpdir)
        # check if patch size isn't too large. If so make it smaller
        # targetsize = tuple(self.config["Patch size"])
        targetsize = tuple(set_patch_size(self.config))
        imgsize = targetsize

        transforms = [RandomCrop(output_size=imgsize), ToTensor()]
        if 'Whole Tumor' in self.config and self.config["Whole Tumor"]:
            transforms = [BinarySegmentation()] + transforms
        transform = Compose(transforms)

        if 'Target' in self.config and self.config['Target'] == 'Brainmask':
            trainset = dataset.getBrainmaskDataset(splits,
                                                   sequences,
                                                   transform=transform)
        else:
            trainset = dataset.getDataset(splits,
                                          sequences,
                                          transform=transform)

        trainset.saveListOfPatients(os.path.join(self.tmpdir, 'trainset.json'))
        self.logger.info('Generating patches with input size ' + str(imgsize) +
                         ' and outputsize ' + str(targetsize))

        n_workers = self.config['Num Workers']
        trainloader = DataLoader(trainset,
                                 batch_size=batchsize,
                                 num_workers=n_workers,
                                 shuffle=True)
        if len(testsplits) > 0:
            if 'Target' in self.config and self.config['Target'] == 'Brainmask':
                testset = dataset.getBrainmaskDataset(testsplits,
                                                      sequences,
                                                      transform=transform)
            else:
                testset = dataset.getDataset(testsplits,
                                             sequences,
                                             transform=transform)
            testloader = DataLoader(testset,
                                    batch_size=batchsize,
                                    num_workers=n_workers,
                                    shuffle=True)
        else:
            testloader = None

        logDataLoader(trainloader, self.tmpdir)

        return trainloader, testloader
    def getDataloader(self):
        batchsize = self.config['Batch size']
        loc = os.path.join(self.datadir, self.config["Nifti Source"])
        sequences = self.config[
            "Sequences"] if "Sequences" in self.config else None
        # Loading the specialized config settings from file
        print("normalization technique is:", self.config["technique"])
        print("using otsu threshold for normalization:",
              self.config["using_otsu_ROI"])
        print("resampling factor is:", self.config["resampling_factor"])

        if self.config['Dataset'] == 'Brats18':
            dataset = Brats18.fromFile(loc)
        elif self.config['Dataset'] == 'BTD':
            print(self.config['Brainmask'])
            if self.config['Brainmask'] == False:
                dataset = BTD.fromFile(loc, brainmask=False)
            else:
                dataset = BTD.fromFile(loc, brainmask=True)
        elif self.config['Dataset'] == 'Hippocampus':
            dataset = Hippocampus.fromFile(loc)
        elif self.config['Dataset'] == 'LipoData':
            dataset = LipoData.fromFile(loc)
        elif self.config['Dataset'] == 'LitsData':
            dataset = LitsData.fromFile(loc)
        elif self.config['Dataset'] == 'ErgoData':
            dataset = ErgoData.fromFile(loc)

        if "Splits from File" in self.config:
            dataset.setSplits(self.config["Splits from File"])
        elif "Crossval Splits" in self.config:
            dataset.createCVSplits(self.config["Crossval Splits"])
        #### Data specifics
        splits = self.config['Splits']
        testsplits = self.config['Testsplits']
        dataset.saveSplits(self.tmpdir)
        # check if patch size isn't too large. If so make it smaller
        # targetsize = tuple(self.config["Patch size"])
        targetsize = tuple(set_patch_size(self.config))

        imgsize = targetsize

        transforms = [RandomCrop(output_size=imgsize), ToTensor()]
        if 'Whole Tumor' in self.config and self.config["Whole Tumor"]:
            transforms = [BinarySegmentation()] + transforms
        transform = Compose(transforms)

        if 'Target' in self.config and self.config['Target'] == 'Brainmask':
            trainset = dataset.getBrainmaskDataset(splits,
                                                   sequences,
                                                   transform=transform)
        else:
            trainset = dataset.getDataset(splits,
                                          sequences,
                                          transform=transform,
                                          preprocess_config=self.config)

        trainset.saveListOfPatients(os.path.join(self.tmpdir, 'trainset.json'))
        self.logger.info('Generating patches with input size ' + str(imgsize) +
                         ' and outputsize ' + str(targetsize))

        n_workers = self.config['Num Workers']
        now = datetime.now()
        print('train loader is initializing', now)
        trainloader = DataLoader(trainset,
                                 batch_size=batchsize,
                                 num_workers=n_workers,
                                 shuffle=True)
        later = datetime.now()
        print('train loader is done initializing', later - now)
        if len(testsplits) > 0:
            if 'Target' in self.config and self.config['Target'] == 'Brainmask':
                testset = dataset.getBrainmaskDataset(testsplits,
                                                      sequences,
                                                      transform=transform)
            else:
                testset = dataset.getDataset(testsplits,
                                             sequences,
                                             transform=transform,
                                             preprocess_config=self.config)
            testloader = DataLoader(testset,
                                    batch_size=batchsize,
                                    num_workers=n_workers,
                                    shuffle=True)
        else:
            testloader = None

        logDataLoader(trainloader, self.tmpdir)

        return trainloader, testloader
Example #7
0
    def run(self):
        ##### Create identifiers
        myconfig = self.config

        ##### Set network specifics
        patchsize = myconfig["Patch size"]
        batchsize = myconfig["Batch size"]
        output_type = myconfig["Output type"]
        only_first = myconfig["Only first"]

        #### Data specifics
        splits = myconfig["Splits"]

        ##### load datamanager
        loc = os.path.join(self.datadir, self.config["Nifti Source"])
        if self.config['Dataset'] == 'Brats18':
            dataset = Brats18.fromFile(loc)
        elif self.config['Dataset'] == 'BTD':
            dataset = BTD.fromFile(loc)
        elif self.config['Dataset'] == 'Hippocampus':
            dataset = Hippocampus.fromFile(loc)

        if "Splits from File" in myconfig:
            dataset.loadSplits(myconfig["Splits from File"])


        ##### Load model from source step
        sourcestep = myconfig["Model Source"]
        loc_model = os.path.join(self.datadir, sourcestep)
        config_model = self.loadConfig(os.path.join(loc_model, 'config.json'))

        if "Sequences" in self.config:
            sequences = self.config["Sequences"]
        else:
            sequences = config_model["Sequences"]

        transforms = [ToTensor()]
        if 'Whole Tumor' in self.config and self.config["Whole Tumor"]:
            transforms = [BinarySegmentation()] + transforms
        transform = Compose(transforms)
        if 'Target' in self.config and self.config['Target'] == 'Brainmask':
            testset = dataset.getBrainmaskDataset(splits, sequences, transform=transform)
        else:
            testset = dataset.getDataset(splits, sequences, transform=transform)
        dataloader = DataLoader(testset, batch_size=batchsize, num_workers=0, shuffle=True)

        evaluator = StandardEvaluator.loadFromCheckpoint(os.path.join(loc_model, 'model.pt'))
        self.logger.info('Dataloader has {n} images.'.format(n=len(testset)))
        all_dice = []
        all_dice_core = []
        all_dice_enhancing = []
        results = pd.DataFrame(columns=['sample', 'subject', 'class', 'TP', 'FP', 'FN', 'TN', 'dice'])
        for i_batch, sample_batched in enumerate(dataloader):
            ######### TODO: work with original dataset
            images = sample_batched['data']
            segfiles = sample_batched['seg_file']
            subjects = sample_batched['subject']
            segs = sample_batched['seg']
            resultpaths = [os.path.join(self.tmpdir, s+'_segmented.nii.gz') for s in subjects]
            uncertaintypaths = [os.path.join(self.tmpdir, s + '_epistimci.nii.gz') for s in subjects]
            classifications, epistemicUncertainty = evaluator.segmentNifti(images, segfiles, patchsize, resultpaths,
                                                                           uncertaintypaths)
            import pickle
            segmentations = segs.numpy()
            picklepath = myconfig["pickleVar"]
            with open(picklepath, 'wb') as f:
                pickle.dump([segmentations, classifications, epistemicUncertainty, segfiles, subjects], f)

            for i in range(0, len(subjects)):
                seg = segs[i].numpy()
                plotResultImage(dataset, resultpaths[i], uncertaintypaths[i], self.tmpdir, subjects[i], output_type=output_type)
                for c in range(0,5):
                    truth = seg == c
                    positive = classifications[i] == c
                    (dice, TT, FP, FN, TN) = getPerformanceMeasures(positive, truth)
                    results = results.append({'sample':i_batch, 'class':c, 'subject':subjects[i], 'TP': TT, 'FP': FP, 'FN': FN, 'TN': TN, 'dice': dice}, ignore_index=True)
                    if c == 4:
                        all_dice_enhancing.append(dice)
                class_whole = classifications[i] > 0
                result_core = (classifications[i] == 1) | (classifications[i] == 4)
                truth_whole = seg > 0
                truth_core = (seg == 1) | (seg == 4)
                (dice, TT, FP, FN, TN) = getPerformanceMeasures(class_whole, truth_whole)
                (dice_core, TT_core, FP_core, FN_core, TN_core) = getPerformanceMeasures(result_core, truth_core)
                all_dice.append(dice)
                all_dice_core.append(dice_core)
                self.logger.info('Nifti image segmented for ' + subjects[i] + '. Dice: ' + str(dice))
                results = results.append({'sample':i_batch, 'class':'whole', 'subject':subjects[i], 'TP': TT, 'FP': FP, 'FN': FN,'TN': TN, 'dice': dice}, ignore_index=True)
                results = results.append(
                    {'sample': i_batch, 'class': 'core', 'subject': subjects[i], 'TP': TT_core, 'FP': FP_core, 'FN': FN_core,
                     'TN': TN_core, 'dice': dice_core}, ignore_index=True)
            if only_first: break
        dice_mean = sum(all_dice)/len(all_dice)
        dice_core = sum(all_dice_core)/len(all_dice_core)
        dice_enhancing = sum(all_dice_enhancing) / len(all_dice_enhancing)
        plt.boxplot(all_dice)
        plt.savefig(os.path.join(self.tmpdir, 'boxplot_dice.png'))
        plt.close()
        results.to_csv(os.path.join(self.tmpdir, 'results_eval.csv'))
        dataset.saveSplits(self.tmpdir)
        self.logger.info('evaluation finished. Dice coefficient: whole: {}, core: {}, enhancing: {}'.format(dice_mean, dice_core, dice_enhancing))

        self.tearDown()