def on_init(t): global t0 t0 = time.time() global step step = 0 global df_prices, df_WS df_prices = pandas.DataFrame(columns=[ 'clearing_price', 'clearing_quantity', 'unresponsive_loads', 'slack_t-1' ]) df_WS = pandas.read_csv('glm_generation_' + city + '/' + market_data, parse_dates=[0], index_col=[0]) #Find objects global houses if flexible_houses == 0: houses = [] else: houses = gldimport.find_objects('class=house')[:flexible_houses] #global df_house_state; #df_house_state = HHfct.get_settings_houses(houses,interval) batteries = gldimport.find_objects('class=battery') global batterylist, EVlist batterylist, EVlist = gldimport.sort_batteries(batteries) global df_battery_state df_battery_state = Bfct.get_settings_batteries(batterylist, interval) global df_EV_state df_EV_state = EVfct.get_settings_EVs(EVlist, interval) pvs = gldimport.find_objects('class=solar') global pvlist, pvinvlist pvlist, pvinvlist = gldimport.sort_pvs(pvs) global df_PV_state df_PV_state = PVfct.get_settings(pvlist, interval) global df_prices, df_WS df_prices = pandas.DataFrame(columns=[ 'clearing_price', 'clearing_quantity', 'unresponsive_loads', 'slack_t-1' ]) df_WS = pandas.read_csv('glm_generation_' + city + '/' + market_data, parse_dates=[0], index_col=[0]) print('Initialize finished after ' + str(time.time() - t0)) return True
def on_init(t): global t0; t0 = time.time() global step; step = 0 #Instead of mysql global df_buy_bids, df_supply_bids, df_awarded_bids; df_buy_bids = pandas.DataFrame(columns=['timestamp','appliance_name','bid_price','bid_quantity']) df_supply_bids = pandas.DataFrame(columns=['timestamp','appliance_name','bid_price','bid_quantity']) df_awarded_bids = pandas.DataFrame(columns=['timestamp','appliance_name','bid_price','bid_quantity','S_D']) #Find objects global houses; if flexible_houses == 0: houses = [] else: houses = gldimport.find_objects('class=house')[:flexible_houses] #global df_house_state; #df_house_state = HHfct.get_settings_houses(houses,interval) batteries = gldimport.find_objects('class=battery') global batterylist, EVlist; batterylist, EVlist = gldimport.sort_batteries(batteries) global df_battery_state; df_battery_state = Bfct.get_settings_batteries(batterylist,interval) global df_EV_state; if EV_data == 'None': df_EV_state = EVfct.get_settings_EVs_rnd(EVlist,interval) else: df_EV_state = EVfct.get_settings_EVs(EVlist,interval) pvs = gldimport.find_objects('class=solar') global pvlist, pvinvlist; pvlist, pvinvlist = gldimport.sort_pvs(pvs) global df_PV_state; df_PV_state = PVfct.get_settings(pvlist,interval) if load_forecast == 'perfect': global df_PV_forecast; try: df_PV_all = pandas.read_csv('glm_generation_'+city+'/perfect_PV_forecast_'+month+'_all.csv',parse_dates=True,skiprows=8) df_PV_all['# timestamp'] = df_PV_all['# timestamp'].str.replace(r' UTC$', '') df_PV_all['# timestamp'] = pandas.to_datetime(df_PV_all['# timestamp']) df_PV_all.set_index('# timestamp',inplace=True) df_PV_forecast = pandas.DataFrame(index=df_PV_all.index,columns=['PV_infeed'],data=df_PV_all[df_PV_state['inverter_name']].sum(axis=1)) df_PV_forecast.to_csv('glm_generation_'+city+'/perfect_PV_forecast_'+month+'.csv') except: print('No perfect PV forecast found, use myopic PV forecast') df_PV_forecast = None global df_prices, df_WS; df_prices = pandas.DataFrame(columns=['clearing_price','clearing_quantity','unresponsive_loads','slack_t-1']) df_WS = pandas.read_csv('glm_generation_'+city+'/'+market_data,parse_dates=[-1],index_col=[0]) df_WS = pandas.DataFrame(index=pandas.to_datetime(df_WS.index.astype(str)),columns=df_WS.columns,data=df_WS.values.astype(float)) #Align weekdays of Pecan Street Data and WS: For yearly data only (TESS, not powernet) # year_sim = parser.parse(gridlabd.get_global('clock')).replace(tzinfo=None).year # first_weekday = pandas.Timestamp(year_sim,1,1).weekday() # first_weekday_WS = df_WS.index[0].weekday() # while not first_weekday_WS == first_weekday: # df_WS = df_WS.iloc[1:] # first_weekday_WS = df_WS.index[0].weekday() # df_WS =df_WS.iloc[:(365*24*12)] #Should not be hardcoded # df_WS.index = pandas.date_range(pandas.Timestamp(year_sim,1,1,0),pandas.Timestamp(year_sim,12,31,23,55),freq='5min') print('Initialize finished after '+str(time.time()-t0)) return True
def on_init(t): global t0; t0 = time.time() global step; step = 0 #Documentation global df_buy_bids, df_supply_bids, df_awarded_bids; df_buy_bids = pandas.DataFrame(columns=['timestamp','appliance_name','bid_price','bid_quantity']) df_supply_bids = pandas.DataFrame(columns=['timestamp','appliance_name','bid_price','bid_quantity']) df_awarded_bids = pandas.DataFrame(columns=['timestamp','appliance_name','bid_price','bid_quantity','S_D']) #Customers customers = gldimport.find_objects('class=house') #Find houses with flexible HVAC (0 in MVP) global houses; if flexible_houses == 0: houses = [] else: houses = gldimport.find_objects('class=house') global df_house_state; df_house_state = HHfct.get_settings_houses(houses,interval) #Batteries and EVs batteries = gldimport.find_objects('class=battery') global batterylist, EVlist; batterylist, EVlist = gldimport.sort_batteries(batteries) global df_battery_state; df_battery_state = Bfct.get_settings_batteries(batterylist,interval) global df_EV_state; if (EV_data == 'None') or (len(EVlist) == 0): df_EV_state = EVfct.get_settings_EVs_rnd(EVlist,interval) else: df_EV_state = EVfct.get_settings_EVs(EVlist,interval) #PVs pvs = gldimport.find_objects('class=solar') global pvlist, pvinvlist; pvlist, pvinvlist = gldimport.sort_pvs(pvs) global df_PV_state; df_PV_state = PVfct.get_settings(pvlist,interval) if load_forecast == 'perfect': global df_PV_forecast; try: df_PV_all = pandas.read_csv(input_folder+'/perfect_PV_forecast_'+dt_sim_time.month+'_all.csv',parse_dates=True,skiprows=8) df_PV_all['# timestamp'] = df_PV_all['# timestamp'].str.replace(r' UTC$', '') df_PV_all['# timestamp'] = pandas.to_datetime(df_PV_all['# timestamp']) df_PV_all.set_index('# timestamp',inplace=True) df_PV_forecast = pandas.DataFrame(index=df_PV_all.index,columns=['PV_infeed'],data=df_PV_all[df_PV_state['inverter_name']].sum(axis=1)) df_PV_forecast.to_csv(input_folder+'/perfect_PV_forecast_'+dt_sim_time.month+'.csv') except: print('No perfect PV forecast found, use myopic PV forecast') df_PV_forecast = None #Tokens global df_tokens; df_tokens = pandas.DataFrame(columns=['clearing_price','clearing_quantity','partial','alpha','unresponsive_loads','system_mode','slack_t-1']) global df_controlroom; df_controlroom = pandas.read_csv(input_folder + '/' + control_room_data,index_col=[0],parse_dates=True) # This includes the control room ts of coincident peak forecast global df_WS; df_WS = pandas.read_csv(input_folder + '/' + market_data,index_col=[0],parse_dates=True) # This includes the control room ts of coincident peak forecast print('Initialize finished after '+str(time.time()-t0)) return True