Example #1
0
def test_gp_nonfinite_phenotype():
    random = RandomState(94584)
    N = 50
    X = random.randn(N, 100)
    offset = 0.5

    mean = OffsetMean(N)
    mean.offset = offset
    mean.fix_offset()

    cov = LinearCov(X)
    cov.scale = 1.0

    y = zeros(N)

    y[0] = nan
    with pytest.raises(ValueError):
        GP(y, mean, cov)

    y[0] = -inf
    with pytest.raises(ValueError):
        GP(y, mean, cov)

    y[0] = +inf
    with pytest.raises(ValueError):
        GP(y, mean, cov)
Example #2
0
def test_gp_value_1():
    random = RandomState(94584)
    N = 50
    X = random.randn(N, 100)
    offset = 0.5

    mean = OffsetMean(N)
    mean.offset = offset
    mean.fix_offset()

    cov = LinearCov(X)
    cov.scale = 1.0

    y = random.randn(N)

    gp = GP(y, mean, cov)
    assert_allclose(gp.value(), -153.623791551399108)
Example #3
0
def test_gp_gradient():
    random = RandomState(94584)
    N = 50
    X = random.randn(N, 100)
    offset = 0.5

    mean = OffsetMean(N)
    mean.offset = offset
    mean.fix_offset()

    cov = LinearCov(X)
    cov.scale = 1.0

    y = random.randn(N)

    gp = GP(y, mean, cov)

    assert_allclose(gp._check_grad(), 0, atol=1e-5)
Example #4
0
def test_gp_maximize():
    random = RandomState(94584)
    N = 50
    X = random.randn(N, 100)
    offset = 0.5

    mean = OffsetMean(N)
    mean.offset = offset
    mean.fix_offset()

    cov = LinearCov(X)
    cov.scale = 1.0

    y = random.randn(N)

    gp = GP(y, mean, cov)

    assert_allclose(gp.value(), -153.623791551)
    gp.fit(verbose=False)
    assert_allclose(gp.value(), -79.8992122415)