Example #1
0
# COMMAND ----------

# MAGIC %md
# MAGIC To prepare the data for analysis, we perform the following transformations:
# MAGIC - Split multiallelic variants with the ``split_multiallelics`` transformer.
# MAGIC - Calculate the number of alternate alleles for biallelic variants with `genotype_states`.
# MAGIC - Replace any missing values with the mean of the non-missing values using `mean_substitute`.
# MAGIC - Filter out all homozygous SNPs.

# COMMAND ----------

variant_df = (glow.transform(
    'split_multiallelics', base_variant_df).withColumn(
        'values',
        glow.mean_substitute(glow.genotype_states('genotypes'))).filter(
            fx.size(fx.array_distinct('values')) > 1))

# COMMAND ----------

# MAGIC %md
# MAGIC
# MAGIC Create the beginning block genotype matrix and sample block ID mapping with `glow.wgr.block_variants_and_samples`.
# MAGIC
# MAGIC Write the block matrix to Delta and the sample blocks a JSON file so that we can reuse them for multiple phenotype batches.

# COMMAND ----------

block_df, sample_blocks = glow.wgr.block_variants_and_samples(
    variant_df, sample_ids, variants_per_block, sample_block_count)
Example #2
0
# COMMAND ----------

# MAGIC %md
# MAGIC 
# MAGIC #### Run Principal Component Analysis (PCA)
# MAGIC 
# MAGIC To control for ancestry in the GWAS
# MAGIC 
# MAGIC Note: `array_to_sparse_vector` is a function built into Glow

# COMMAND ----------

vectorized = (spark.read.format("delta")
                        .load(delta_gold_path)
                        .select(glow.array_to_sparse_vector(glow.genotype_states(fx.col("genotypes"))).alias("features"))
                        .cache())

# COMMAND ----------

# MAGIC %md
# MAGIC #### Use `pyspark.ml` to calculate principal components on sparse vector

# COMMAND ----------

matrix = RowMatrix(MLUtils.convertVectorColumnsFromML(vectorized, "features").rdd.map(lambda x: x.features))
pcs = matrix.computeSVD(num_pcs)

# COMMAND ----------

pd.DataFrame(pcs.V.toArray()).to_csv(principal_components_path)
Example #3
0
def run(
    plink_path: str,
    traits_path: str,
    covariates_path: str,
    variants_per_block: int,
    sample_block_count: int,
    output_dir: str,
    plink_fam_sep: str = "\t",
    plink_bim_sep: str = "\t",
    alphas: Optional[list] = None,
    contigs: List[str] = None,
):
    """Run Glow WGR"""
    output_path = Path(output_dir)
    if output_path.exists():
        shutil.rmtree(output_path)
    output_path.mkdir(parents=True, exist_ok=False)

    if alphas is None:
        alphas = np.array([])
    else:
        alphas = np.array(alphas).astype(float)

    spark = spark_session()
    logger.info(
        f"Loading PLINK dataset at {plink_path} (fam sep = {plink_fam_sep}, bim sep = {plink_bim_sep}, alphas = {alphas})"
    )
    df = (spark.read.format("plink").option(
        "bimDelimiter",
        plink_bim_sep).option("famDelimiter", plink_fam_sep).option(
            "includeSampleIds", True).option("mergeFidIid",
                                             False).load(plink_path))

    variant_df = df.withColumn(
        "values", mean_substitute(genotype_states(F.col("genotypes")))).filter(
            F.size(F.array_distinct("values")) > 1)
    if contigs is not None:
        variant_df = variant_df.filter(F.col("contigName").isin(contigs))

    sample_ids = get_sample_ids(variant_df)
    logger.info(
        f"Found {len(sample_ids)} samples, first 10: {sample_ids[:10]}")

    ###########
    # Stage 1 #
    ###########

    logger.info(HR)
    logger.info("Calculating variant/sample block info")
    block_df, sample_blocks = block_variants_and_samples(
        variant_df,
        sample_ids,
        variants_per_block=variants_per_block,
        sample_block_count=sample_block_count,
    )

    label_df = pd.read_csv(traits_path, index_col="sample_id")
    label_df = (label_df - label_df.mean()) / label_df.std(ddof=0)
    logger.info(HR)
    logger.info("Trait info:")
    logger.info(_info(label_df))

    cov_df = pd.read_csv(covariates_path, index_col="sample_id")
    cov_df = (cov_df - cov_df.mean()) / cov_df.std(ddof=0)
    logger.info(HR)
    logger.info("Covariate info:")
    logger.info(_info(cov_df))

    stack = RidgeReducer(alphas=alphas)
    reduced_block_df = stack.fit_transform(block_df, label_df, sample_blocks,
                                           cov_df)
    logger.info(HR)
    logger.info("Stage 1: Reduced block schema:")
    logger.info(_schema(reduced_block_df))

    path = output_path / "reduced_blocks.parquet"
    reduced_block_df.write.parquet(str(path), mode="overwrite")
    logger.info(f"Stage 1: Reduced blocks written to {path}")

    # Flatten to scalars for more convenient access w/o Spark
    flat_reduced_block_df = spark.read.parquet(str(path))
    path = output_path / "reduced_blocks_flat.csv.gz"
    flat_reduced_block_df = _flatten_reduced_blocks(flat_reduced_block_df)
    flat_reduced_block_df = flat_reduced_block_df.toPandas()
    flat_reduced_block_df.to_csv(path, index=False)
    # flat_reduced_block_df.write.parquet(str(path), mode='overwrite')
    logger.info(f"Stage 1: Flattened reduced blocks written to {path}")

    ###########
    # Stage 2 #
    ###########

    # Monkey-patch this in until there's a glow release beyond 0.5.0
    if glow_version != "0.5.0":
        raise NotImplementedError(
            f"Must remove adjustements for glow != 0.5.0 (found {glow_version})"
        )
    # Remove after glow update
    RidgeRegression.transform_loco = transform_loco
    estimator = RidgeRegression(alphas=alphas)
    model_df, cv_df = estimator.fit(reduced_block_df, label_df, sample_blocks,
                                    cov_df)
    logger.info(HR)
    logger.info("Stage 2: Model schema:")
    logger.info(_schema(model_df))
    logger.info("Stage 2: CV schema:")
    logger.info(_schema(cv_df))

    y_hat_df = estimator.transform(reduced_block_df, label_df, sample_blocks,
                                   model_df, cv_df, cov_df)

    logger.info(HR)
    logger.info("Stage 2: Prediction info:")
    logger.info(_info(y_hat_df))
    logger.info(y_hat_df.head(5))

    path = output_path / "predictions.csv"
    y_hat_df.reset_index().to_csv(path, index=False)
    logger.info(f"Stage 2: Predictions written to {path}")

    y_hat_df_loco = estimator.transform_loco(reduced_block_df, label_df,
                                             sample_blocks, model_df, cv_df,
                                             cov_df)

    path = output_path / "predictions_loco.csv"
    y_hat_df_loco.reset_index().to_csv(path, index=False)
    logger.info(f"Stage 2: LOCO Predictions written to {path}")

    ###########
    # Stage 3 #
    ###########

    # Do this to correct for the error in Glow at https://github.com/projectglow/glow/issues/257
    if glow_version != "0.5.0":
        raise NotImplementedError(
            f"Must remove adjustements for glow != 0.5.0 (found {glow_version})"
        )
    cov_arr = cov_df.to_numpy()
    cov_arr = cov_arr.T.ravel(order="C").reshape(cov_arr.shape)

    # Convert the pandas dataframe into a Spark DataFrame
    adjusted_phenotypes = reshape_for_gwas(spark, label_df - y_hat_df)

    # Run GWAS w/o LOCO (this could be for a much larger set of variants)
    wgr_gwas = (variant_df.withColumnRenamed("values", "callValues").crossJoin(
        adjusted_phenotypes.withColumnRenamed(
            "values", "phenotypeValues")).select(
                "start",
                "names",
                "label",
                expand_struct(
                    linear_regression_gwas(F.col("callValues"),
                                           F.col("phenotypeValues"),
                                           F.lit(cov_arr))),
            ))

    logger.info(HR)
    logger.info("Stage 3: GWAS (no LOCO) schema:")
    logger.info(_schema(wgr_gwas))

    # Convert to pandas
    wgr_gwas = wgr_gwas.toPandas()
    logger.info(HR)
    logger.info("Stage 3: GWAS (no LOCO) info:")
    logger.info(_info(wgr_gwas))
    logger.info(wgr_gwas.head(5))

    path = output_path / "gwas.csv"
    wgr_gwas.to_csv(path, index=False)
    logger.info(f"Stage 3: GWAS (no LOCO) results written to {path}")
    logger.info(HR)
    logger.info("Done")

    # TODO: Enable this once WGR is fully released
    # See: https://github.com/projectglow/glow/issues/256)

    # Run GWAS w/ LOCO
    adjusted_phenotypes = reshape_for_gwas(spark, label_df - y_hat_df_loco)
    wgr_gwas = (variant_df.withColumnRenamed("values", "callValues").join(
        adjusted_phenotypes.withColumnRenamed("values", "phenotypeValues"),
        ["contigName"],
    ).select(
        "contigName",
        "start",
        "names",
        "label",
        expand_struct(
            linear_regression_gwas(F.col("callValues"),
                                   F.col("phenotypeValues"), F.lit(cov_arr))),
    ))

    # Convert to pandas
    wgr_gwas = wgr_gwas.toPandas()
    logger.info(HR)
    logger.info("Stage 3: GWAS (with LOCO) info:")
    logger.info(_info(wgr_gwas))
    logger.info(wgr_gwas.head(5))

    path = output_path / "gwas_loco.csv"
    wgr_gwas.to_csv(path, index=False)
    logger.info(f"Stage 3: GWAS (with LOCO) results written to {path}")
    logger.info(HR)
    logger.info("Done")
Example #4
0
sample_ids = glow.wgr.get_sample_ids(base_variant_df)

# COMMAND ----------

# MAGIC %md
# MAGIC To prepare the data for analysis, we perform the following transformations:
# MAGIC - Split multiallelic variants with the ``split_multiallelics`` transformer.
# MAGIC - Calculate the number of alternate alleles for biallelic variants with `genotype_states`.
# MAGIC - Replace any missing values with the mean of the non-missing values using `mean_substitute`.
# MAGIC - Filter out all homozygous SNPs.

# COMMAND ----------

variant_df = (glow.transform('split_multiallelics', base_variant_df)
  .withColumn('values', glow.mean_substitute(glow.genotype_states('genotypes')))
  .filter(fx.size(fx.array_distinct('values')) > 1))

# COMMAND ----------

# MAGIC %md
# MAGIC 
# MAGIC Create the beginning block genotype matrix and sample block ID mapping with `glow.wgr.block_variants_and_samples`.
# MAGIC 
# MAGIC Write the block matrix to Delta and the sample blocks a JSON file so that we can reuse them for multiple phenotype batches.

# COMMAND ----------

block_df, sample_blocks = glow.wgr.block_variants_and_samples(variant_df, 
                                                     sample_ids, 
                                                     variants_per_block,