Example #1
0
 def findSolutionValues(self, lp):
     prob = lp.solverModel
     if self.mip and self.hasMIPConstraints(lp.solverModel):
         solutionStatus = glpk.glp_mip_status(prob)
     else:
         solutionStatus = glpk.glp_get_status(prob)
     glpkLpStatus = {
         glpk.GLP_OPT: LpStatusOptimal,
         glpk.GLP_UNDEF: LpStatusUndefined,
         glpk.GLP_FEAS: LpStatusNotSolved,
         glpk.GLP_INFEAS: LpStatusInfeasible,
         glpk.GLP_NOFEAS: LpStatusInfeasible,
         glpk.GLP_UNBND: LpStatusUnbounded
     }
     #populate pulp solution values
     for var in lp.variables():
         if self.mip and self.hasMIPConstraints(lp.solverModel):
             var.varValue = glpk.glp_mip_col_val(prob, var.glpk_index)
         else:
             var.varValue = glpk.glp_get_col_prim(prob, var.glpk_index)
         var.dj = glpk.glp_get_col_dual(prob, var.glpk_index)
     #put pi and slack variables against the constraints
     for constr in lp.constraints.values():
         if self.mip and self.hasMIPConstraints(lp.solverModel):
             row_val = glpk.glp_mip_row_val(prob, constr.glpk_index)
         else:
             row_val = glpk.glp_get_row_prim(prob, constr.glpk_index)
         constr.slack = -constr.constant - row_val
         constr.pi = glpk.glp_get_row_dual(prob, constr.glpk_index)
     lp.resolveOK = True
     for var in lp.variables():
         var.isModified = False
     lp.status = glpkLpStatus.get(solutionStatus, LpStatusUndefined)
     return lp.status
Example #2
0
    def evaluate_problem(self, data, problem):

        responses = data["response"]
        metrics = data["metric"]

        counter = 0
        obj_val = glpki.glp_mip_obj_val(problem)
        for r in responses:
            if (1.0 == (glpki.glp_mip_col_val(problem, r.column))):
                counter = counter + 1

        return (counter, obj_val)