Example #1
0
def setup_model(system_dict):
    model_name = system_dict["model"]["params"]["model_name"];
    use_pretrained = system_dict["model"]["params"]["use_pretrained"];
    freeze_base_network = system_dict["model"]["params"]["freeze_base_network"];
    custom_network = system_dict["model"]["custom_network"];
    final_layer = system_dict["model"]["final_layer"];
    num_classes = system_dict["dataset"]["params"]["num_classes"];

    finetune_net, model_name = get_base_model(model_name, use_pretrained, num_classes, freeze_base_network);

    if(len(custom_network)):
        if(final_layer):
            if(model_name in set1):
                finetune_net = create_final_layer(finetune_net, custom_network, num_classes, set=1);
            elif(model_name in set2):
                finetune_net = create_final_layer(finetune_net, custom_network, num_classes, set=2);
            elif(model_name in set3):
                finetune_net = create_final_layer(finetune_net, custom_network, num_classes, set=3);
        else:
            print("Final layer not assigned");
            return 0;
    else:
        if(model_name in set1):
            with finetune_net.name_scope():
                finetune_net.output = nn.Dense(num_classes, weight_initializer=init.Xavier());
                finetune_net.output.initialize(init.Xavier(), ctx = ctx);
        elif(model_name in set2):
            net = nn.HybridSequential();
            with net.name_scope():
                net.add(nn.Conv2D(num_classes, kernel_size=(1, 1), strides=(1, 1), weight_initializer=init.Xavier()));
                net.add(nn.Flatten());
            with finetune_net.name_scope():
                finetune_net.output = net;
                finetune_net.output.initialize(init.Xavier(), ctx = ctx)
        elif(model_name in set3):
            with finetune_net.name_scope():
                finetune_net.fc = nn.Dense(num_classes, weight_initializer=init.Xavier());
                finetune_net.fc.initialize(init.Xavier(), ctx = ctx)


    if(not use_pretrained):
        finetune_net.initialize(init.Xavier(), ctx = ctx)


    system_dict["local"]["model"] = finetune_net;

    return system_dict;
Example #2
0
def setup_model(system_dict):
    if (system_dict["model"]["type"] == "pretrained"):
        model_name = system_dict["model"]["params"]["model_name"]
        use_pretrained = system_dict["model"]["params"]["use_pretrained"]
        freeze_base_network = system_dict["model"]["params"][
            "freeze_base_network"]
        custom_network = system_dict["model"]["custom_network"]
        final_layer = system_dict["model"]["final_layer"]
        num_classes = system_dict["dataset"]["params"]["num_classes"]

        finetune_net, model_name = get_base_model(model_name, use_pretrained,
                                                  num_classes,
                                                  freeze_base_network)

        if (len(custom_network)):
            if (final_layer):
                if (model_name in set1):
                    finetune_net = create_final_layer(finetune_net,
                                                      custom_network,
                                                      num_classes,
                                                      set=1)
                elif (model_name in set2):
                    finetune_net = create_final_layer(finetune_net,
                                                      custom_network,
                                                      num_classes,
                                                      set=2)
                elif (model_name in set3):
                    finetune_net = create_final_layer(finetune_net,
                                                      custom_network,
                                                      num_classes,
                                                      set=3)
            else:
                print("Final layer not assigned")
                return 0
        else:
            if (model_name in set1):
                with finetune_net.name_scope():
                    finetune_net.output = nn.Dense(
                        num_classes, weight_initializer=init.Xavier())
                    finetune_net.output.initialize(init.Xavier(), ctx=ctx)
            elif (model_name in set2):
                net = nn.HybridSequential()
                with net.name_scope():
                    net.add(
                        nn.Conv2D(num_classes,
                                  kernel_size=(1, 1),
                                  strides=(1, 1),
                                  weight_initializer=init.Xavier()))
                    net.add(nn.Flatten())
                with finetune_net.name_scope():
                    finetune_net.output = net
                    finetune_net.output.initialize(init.Xavier(), ctx=ctx)
            elif (model_name in set3):
                with finetune_net.name_scope():
                    finetune_net.fc = nn.Dense(
                        num_classes, weight_initializer=init.Xavier())
                    finetune_net.fc.initialize(init.Xavier(), ctx=ctx)

        if (not use_pretrained):
            finetune_net.initialize(init.Xavier(), ctx=ctx)

        system_dict["local"]["model"] = finetune_net

        return system_dict

    else:
        count = []
        for i in range(len(names)):
            count.append(1)

        network_stack = system_dict["custom_model"]["network_stack"]
        G = nx.DiGraph()
        G.add_node("Net", pos=(1, 1))
        sequential_first = "data"
        sequential_second, count = get_layer_uid(network_stack[0], count)

        count = []
        for i in range(len(names)):
            count.append(1)

        position = 1
        G.add_node(sequential_first, pos=(2, 1))
        position += 1

        net = nn.HybridSequential()
        max_width = 1
        for i in range(len(network_stack)):
            if (type(network_stack[i]) == list):
                branch_end_points = []
                branch_lengths = []
                branches = []
                branch_net = []

                if (max_width < len(network_stack[i]) - 2):
                    max_width = len(network_stack[i]) - 2
                for j in range(len(network_stack[i]) - 1):
                    small_net = []
                    branch_net.append(nn.HybridSequential())
                    branch_first = sequential_first
                    branch_position = position
                    column = j + 2
                    for k in range(len(network_stack[i][j])):
                        branch_second, count = get_layer_uid(
                            network_stack[i][j][k], count)
                        small_net.append(
                            custom_model_get_layer(network_stack[i][j][k]))
                        branch_net[j].add(
                            custom_model_get_layer(network_stack[i][j][k]))
                        G.add_node(branch_second,
                                   pos=(column, branch_position))
                        branch_position += 1
                        G.add_edge(branch_first, branch_second)
                        branch_first = branch_second

                        if (k == len(network_stack[i][j]) - 1):
                            branch_end_points.append(branch_second)
                            branch_lengths.append(len(network_stack[i][j]))
                    branches.append(small_net)

                position += max(branch_lengths)
                position += 1

                sequential_second, count = get_layer_uid(
                    network_stack[i][-1], count)
                if (network_stack[i][-1]["name"] == "concatenate"):
                    subnetwork = contrib_nn.HybridConcurrent(axis=1)
                    for j in range(len(network_stack[i]) - 1):
                        #print(branch_net[j])
                        subnetwork.add(branch_net[j])

                else:
                    subnetwork = addBlock(branches)

                G.add_node(sequential_second, pos=(2, position))
                position += 1
                for i in range(len(branch_end_points)):
                    G.add_edge(branch_end_points[i], sequential_second)
                sequential_first = sequential_second
                net.add(subnetwork)

            else:
                sequential_second, count = get_layer_uid(
                    network_stack[i], count)
                net.add(custom_model_get_layer(network_stack[i]))
                G.add_node(sequential_second, pos=(2, position))
                position += 1
                G.add_edge(sequential_first, sequential_second)
                sequential_first = sequential_second

        net = initialize_network(
            net, system_dict["custom_model"]["network_initializer"])

        if (max_width == 1):
            G.add_node("monk", pos=(3, position))
        else:
            G.add_node("monk", pos=(max_width + 3, position))
        pos = nx.get_node_attributes(G, 'pos')

        plt.figure(3, figsize=(8, 12 + position // 6))
        nx.draw_networkx(G,
                         pos,
                         with_label=True,
                         font_size=16,
                         node_color="yellow",
                         node_size=100)
        plt.savefig("graph.png")

        system_dict["local"]["model"] = net

        return system_dict
Example #3
0
def setup_model(system_dict):
    '''
    Setup model based on the system state and parameters

    Args:
        system_dict (dict): System Dictionary

    Returns:
        dict: Updated system dictionary
    '''
    if (system_dict["model"]["type"] == "pretrained"):
        model_name = system_dict["model"]["params"]["model_name"]
        use_pretrained = system_dict["model"]["params"]["use_pretrained"]
        freeze_base_network = system_dict["model"]["params"][
            "freeze_base_network"]
        custom_network = system_dict["model"]["custom_network"]
        final_layer = system_dict["model"]["final_layer"]
        num_classes = system_dict["dataset"]["params"]["num_classes"]

        finetune_net, model_name = get_base_model(model_name, use_pretrained,
                                                  num_classes,
                                                  freeze_base_network)

        if (len(custom_network)):
            if (final_layer):
                if (model_name in set1):
                    finetune_net = create_final_layer(finetune_net,
                                                      custom_network,
                                                      num_classes,
                                                      set=1)
                elif (model_name in set2):
                    finetune_net = create_final_layer(finetune_net,
                                                      custom_network,
                                                      num_classes,
                                                      set=2)
                elif (model_name in set3):
                    finetune_net = create_final_layer(finetune_net,
                                                      custom_network,
                                                      num_classes,
                                                      set=3)
            else:
                print("Final layer not assigned")
                return 0
        else:
            if (model_name in set1):
                with finetune_net.name_scope():
                    finetune_net.output = nn.Dense(
                        num_classes, weight_initializer=init.Xavier())
                    finetune_net.output.initialize(init.Xavier(), ctx=ctx)
            elif (model_name in set2):
                net = nn.HybridSequential()
                with net.name_scope():
                    net.add(
                        nn.Conv2D(num_classes,
                                  kernel_size=(1, 1),
                                  strides=(1, 1),
                                  weight_initializer=init.Xavier()))
                    net.add(nn.Flatten())
                with finetune_net.name_scope():
                    finetune_net.output = net
                    finetune_net.output.initialize(init.Xavier(), ctx=ctx)
            elif (model_name in set3):
                with finetune_net.name_scope():
                    finetune_net.fc = nn.Dense(
                        num_classes, weight_initializer=init.Xavier())
                    finetune_net.fc.initialize(init.Xavier(), ctx=ctx)

        if (not use_pretrained):
            finetune_net.initialize(init.Xavier(), ctx=ctx)

        system_dict["local"]["model"] = finetune_net

        return system_dict

    else:
        net = create_network(system_dict["custom_model"]["network_stack"],
                             debug=system_dict["custom_model"]["debug"])
        net = initialize_network(
            net, system_dict["custom_model"]["network_initializer"])
        system_dict["local"]["model"] = net

        return system_dict