Example #1
0
def setup_model(system_dict):
    if (system_dict["model"]["type"] == "pretrained"):
        model_name = system_dict["model"]["params"]["model_name"]
        use_pretrained = system_dict["model"]["params"]["use_pretrained"]
        freeze_base_network = system_dict["model"]["params"][
            "freeze_base_network"]
        custom_network = system_dict["model"]["custom_network"]
        final_layer = system_dict["model"]["final_layer"]
        num_classes = system_dict["dataset"]["params"]["num_classes"]

        finetune_net, model_name = get_base_model(model_name, use_pretrained,
                                                  num_classes,
                                                  freeze_base_network)

        if (len(custom_network)):
            if (final_layer):
                if (model_name in set1):
                    finetune_net = create_final_layer(finetune_net,
                                                      custom_network,
                                                      num_classes,
                                                      set=1)
                elif (model_name in set2):
                    finetune_net = create_final_layer(finetune_net,
                                                      custom_network,
                                                      num_classes,
                                                      set=2)
                elif (model_name in set3):
                    finetune_net = create_final_layer(finetune_net,
                                                      custom_network,
                                                      num_classes,
                                                      set=3)
            else:
                print("Final layer not assigned")
                return 0
        else:
            if (model_name in set1):
                with finetune_net.name_scope():
                    finetune_net.output = nn.Dense(
                        num_classes, weight_initializer=init.Xavier())
                    finetune_net.output.initialize(init.Xavier(), ctx=ctx)
            elif (model_name in set2):
                net = nn.HybridSequential()
                with net.name_scope():
                    net.add(
                        nn.Conv2D(num_classes,
                                  kernel_size=(1, 1),
                                  strides=(1, 1),
                                  weight_initializer=init.Xavier()))
                    net.add(nn.Flatten())
                with finetune_net.name_scope():
                    finetune_net.output = net
                    finetune_net.output.initialize(init.Xavier(), ctx=ctx)
            elif (model_name in set3):
                with finetune_net.name_scope():
                    finetune_net.fc = nn.Dense(
                        num_classes, weight_initializer=init.Xavier())
                    finetune_net.fc.initialize(init.Xavier(), ctx=ctx)

        if (not use_pretrained):
            finetune_net.initialize(init.Xavier(), ctx=ctx)

        system_dict["local"]["model"] = finetune_net

        return system_dict

    else:
        count = []
        for i in range(len(names)):
            count.append(1)

        network_stack = system_dict["custom_model"]["network_stack"]
        G = nx.DiGraph()
        G.add_node("Net", pos=(1, 1))
        sequential_first = "data"
        sequential_second, count = get_layer_uid(network_stack[0], count)

        count = []
        for i in range(len(names)):
            count.append(1)

        position = 1
        G.add_node(sequential_first, pos=(2, 1))
        position += 1

        net = nn.HybridSequential()
        max_width = 1
        for i in range(len(network_stack)):
            if (type(network_stack[i]) == list):
                branch_end_points = []
                branch_lengths = []
                branches = []
                branch_net = []

                if (max_width < len(network_stack[i]) - 2):
                    max_width = len(network_stack[i]) - 2
                for j in range(len(network_stack[i]) - 1):
                    small_net = []
                    branch_net.append(nn.HybridSequential())
                    branch_first = sequential_first
                    branch_position = position
                    column = j + 2
                    for k in range(len(network_stack[i][j])):
                        branch_second, count = get_layer_uid(
                            network_stack[i][j][k], count)
                        small_net.append(
                            custom_model_get_layer(network_stack[i][j][k]))
                        branch_net[j].add(
                            custom_model_get_layer(network_stack[i][j][k]))
                        G.add_node(branch_second,
                                   pos=(column, branch_position))
                        branch_position += 1
                        G.add_edge(branch_first, branch_second)
                        branch_first = branch_second

                        if (k == len(network_stack[i][j]) - 1):
                            branch_end_points.append(branch_second)
                            branch_lengths.append(len(network_stack[i][j]))
                    branches.append(small_net)

                position += max(branch_lengths)
                position += 1

                sequential_second, count = get_layer_uid(
                    network_stack[i][-1], count)
                if (network_stack[i][-1]["name"] == "concatenate"):
                    subnetwork = contrib_nn.HybridConcurrent(axis=1)
                    for j in range(len(network_stack[i]) - 1):
                        #print(branch_net[j])
                        subnetwork.add(branch_net[j])

                else:
                    subnetwork = addBlock(branches)

                G.add_node(sequential_second, pos=(2, position))
                position += 1
                for i in range(len(branch_end_points)):
                    G.add_edge(branch_end_points[i], sequential_second)
                sequential_first = sequential_second
                net.add(subnetwork)

            else:
                sequential_second, count = get_layer_uid(
                    network_stack[i], count)
                net.add(custom_model_get_layer(network_stack[i]))
                G.add_node(sequential_second, pos=(2, position))
                position += 1
                G.add_edge(sequential_first, sequential_second)
                sequential_first = sequential_second

        net = initialize_network(
            net, system_dict["custom_model"]["network_initializer"])

        if (max_width == 1):
            G.add_node("monk", pos=(3, position))
        else:
            G.add_node("monk", pos=(max_width + 3, position))
        pos = nx.get_node_attributes(G, 'pos')

        plt.figure(3, figsize=(8, 12 + position // 6))
        nx.draw_networkx(G,
                         pos,
                         with_label=True,
                         font_size=16,
                         node_color="yellow",
                         node_size=100)
        plt.savefig("graph.png")

        system_dict["local"]["model"] = net

        return system_dict
Example #2
0
def create_block(network_stack, count, G, sequential_first, position,
                 current_width):
    '''
    Recursively create sub-blocks when designing custom networks

    Args:
        network_stack (list): List of lists containing information on layers for the sub-branch in the network
        count (dict): A dictionary mapping to a count of every type of layer in the network
        G (directed graph): NetworkX object
        sequential_first (str): NAme of the current input layer
        position (int): Vertical position on the directed graph
        current_width (int): Horizontal position on the directed graph
    
    Returns:
        neural network: The required sub-branch
        directed graph: Updated directed graph
        str: Name of the outermost layer in the sub-network
        int: Vertical position of the outer most layer in the sub-network 
        int: Horizontal position of the outer most layer in the sub-network 
    '''
    position += 1
    max_width = current_width
    net = nn.HybridSequential()
    for i in range(len(network_stack)):
        if (type(network_stack[i]) == list):
            is_block = True

            if (type(network_stack[i][-1]) != list):
                if (network_stack[i][-1]["name"] in ["add", "concatenate"]):
                    is_block = False

            if (is_block):
                block, G, count, sequential_second, position, _ = create_block(
                    network_stack[i], count, G, sequential_first, position,
                    current_width)
                sequential_first = sequential_second
                net.add(block)
            else:
                branch_end_points = []
                branch_max_length = 0
                branches = []
                branch_net = []

                #if(max_width < len(network_stack[i])-2):
                #    max_width = len(network_stack[i])-2;
                max_width = current_width
                width = current_width
                for j in range(len(network_stack[i]) - 1):
                    small_net = []
                    branch_net.append(nn.HybridSequential())
                    branch_first = sequential_first
                    branch_position = position
                    column = max((j + 1) * 2 + current_width, width)
                    max_width = column
                    for k in range(len(network_stack[i][j])):
                        if type(network_stack[i][j][k]) == list:
                            is_block2 = True

                            if (type(network_stack[i][j][k][-1]) != list):
                                if (network_stack[i][j][k][-1]["name"]
                                        in ["add", "concatenate"]):
                                    is_block2 = False

                            if (is_block2):
                                block, G, count, branch_second, branch_position, width = create_block(
                                    network_stack[i][j][k], count, G,
                                    branch_first, branch_position,
                                    column - 2)  #j+k+width
                            else:
                                block, G, count, branch_second, branch_position, width = create_block(
                                    [network_stack[i][j][k]], count, G,
                                    branch_first, branch_position,
                                    column - 2)  #j+k+width
                            branch_first = branch_second
                            small_net.append(block)
                            branch_net[j].add(block)
                        else:
                            branch_second, count = get_layer_uid(
                                network_stack[i][j][k], count)
                            small_net.append(
                                custom_model_get_layer(network_stack[i][j][k]))
                            branch_net[j].add(
                                custom_model_get_layer(network_stack[i][j][k]))
                            G.add_node(branch_second,
                                       pos=(column, branch_position))
                            branch_position += 1
                            G.add_edge(branch_first, branch_second)
                            branch_first = branch_second

                        branch_max_length = max(branch_position,
                                                branch_max_length)
                        if (k == len(network_stack[i][j]) - 1):
                            branch_end_points.append(branch_second)
                    branches.append(small_net)

                position = branch_max_length
                position += 1
                max_width += 2

                sequential_second, count = get_layer_uid(
                    network_stack[i][-1], count)
                if (network_stack[i][-1]["name"] == "concatenate"):
                    subnetwork = contrib_nn.HybridConcurrent(axis=1)
                    for j in range(len(network_stack[i]) - 1):
                        subnetwork.add(branch_net[j])
                else:
                    subnetwork = addBlock(branches)

                G.add_node(sequential_second,
                           pos=(2 + current_width, position))
                position += 1
                for i in range(len(branch_end_points)):
                    G.add_edge(branch_end_points[i], sequential_second)
                sequential_first = sequential_second
                net.add(subnetwork)
        else:
            sequential_second, count = get_layer_uid(network_stack[i], count)
            net.add(custom_model_get_layer(network_stack[i]))
            G.add_node(sequential_second, pos=(2 + current_width, position))
            position += 1
            G.add_edge(sequential_first, sequential_second)
            sequential_first = sequential_second

    return net, G, count, sequential_second, position, max_width
Example #3
0
def create_network(network_stack, debug=True):
    '''
    Main function to create network when designing custom networks

    Args:
        network_stack (list): List of lists containing information on layers in the network
    
    Returns:
        neural network: The required complete network
    '''
    count = []
    for i in range(len(names)):
        count.append(1)

    G = nx.DiGraph()
    G.add_node("Net", pos=(1, 1))
    sequential_first = "data"
    #sequential_second, count = get_layer_uid(network_stack[0], count);

    count = []
    for i in range(len(names)):
        count.append(1)

    position = 1
    G.add_node(sequential_first, pos=(2, 1))
    position += 1

    net = nn.HybridSequential()
    max_width = 1
    width = 0
    for i in range(len(network_stack)):
        if (type(network_stack[i]) == list):
            is_block = True

            if (type(network_stack[i][-1]) != list):
                if (network_stack[i][-1]["name"] in ["add", "concatenate"]):
                    is_block = False

            if (is_block):
                block, G, count, sequential_second, position, _ = create_block(
                    network_stack[i], count, G, sequential_first, position, 0)
                sequential_first = sequential_second
                net.add(block)
            else:
                branch_end_points = []
                branch_max_length = 0
                branches = []
                branch_net = []

                if (max_width < len(network_stack[i]) - 2):
                    max_width = len(network_stack[i]) - 2
                width = 0
                for j in range(len(network_stack[i]) - 1):
                    small_net = []
                    branch_first = sequential_first
                    branch_net.append(nn.HybridSequential())
                    branch_position = position
                    if (width > 0):
                        if (column == width):
                            column += 2
                        else:
                            column = width
                    else:
                        column = (j + 1) * 2
                    for k in range(len(network_stack[i][j])):
                        if type(network_stack[i][j][k]) == list:
                            is_block2 = True

                            if (type(network_stack[i][j][k][-1]) != list):
                                if (network_stack[i][j][k][-1]["name"]
                                        in ["add", "concatenate"]):
                                    is_block2 = False

                            if (is_block2):
                                block, G, count, branch_second, branch_position, width = create_block(
                                    network_stack[i][j][k], count, G,
                                    branch_first, branch_position,
                                    column - 2)  #j+k+width
                            else:
                                block, G, count, branch_second, branch_position, width = create_block(
                                    [network_stack[i][j][k]], count, G,
                                    branch_first, branch_position, column - 2)
                            branch_first = branch_second
                            small_net.append(block)
                            branch_net[j].add(block)
                        else:
                            branch_second, count = get_layer_uid(
                                network_stack[i][j][k], count)
                            small_net.append(
                                custom_model_get_layer(network_stack[i][j][k]))
                            branch_net[j].add(
                                custom_model_get_layer(network_stack[i][j][k]))
                            G.add_node(branch_second,
                                       pos=(column, branch_position))
                            branch_position += 1
                            G.add_edge(branch_first, branch_second)
                            branch_first = branch_second

                        branch_max_length = max(branch_position,
                                                branch_max_length)
                        if (k == len(network_stack[i][j]) - 1):
                            branch_end_points.append(branch_second)
                    branches.append(small_net)

                position = branch_max_length
                position += 1
                max_width += width

                sequential_second, count = get_layer_uid(
                    network_stack[i][-1], count)
                if (network_stack[i][-1]["name"] == "concatenate"):
                    subnetwork = contrib_nn.HybridConcurrent(axis=1)
                    for j in range(len(network_stack[i]) - 1):
                        subnetwork.add(branch_net[j])
                else:
                    subnetwork = addBlock(branches)

                sequential_second, count = get_layer_uid(
                    network_stack[i][-1], count)

                G.add_node(sequential_second, pos=(2, position))
                position += 1
                for i in range(len(branch_end_points)):
                    G.add_edge(branch_end_points[i], sequential_second)
                sequential_first = sequential_second
                net.add(subnetwork)

        else:
            sequential_second, count = get_layer_uid(network_stack[i], count)
            G.add_node(sequential_second, pos=(2, position))
            net.add(custom_model_get_layer(network_stack[i]))
            position += 1
            G.add_edge(sequential_first, sequential_second)
            sequential_first = sequential_second

    max_width = max(max_width, width)
    if (max_width == 1):
        G.add_node("monk", pos=(3, position))
    else:
        G.add_node("monk", pos=(max_width + 3, position))
    pos = nx.get_node_attributes(G, 'pos')

    if (not debug):
        plt.ioff()
        plt.figure(3, figsize=(12, 12 + position // 6))
        nx.draw_networkx(G,
                         pos,
                         with_label=True,
                         font_size=16,
                         node_color="yellow",
                         node_size=100)
        plt.savefig("graph.png")
        plt.clf()
    else:
        plt.figure(3, figsize=(12, 12 + position // 6))
        nx.draw_networkx(G,
                         pos,
                         with_label=True,
                         font_size=16,
                         node_color="yellow",
                         node_size=100)
        plt.savefig("graph.png")

    return net
Example #4
0
def create_block(network_stack, count, G, sequential_first, position,
                 current_width):
    position += 1
    max_width = current_width
    net = nn.HybridSequential()
    for i in range(len(network_stack)):
        if (type(network_stack[i]) == list):
            is_block = True

            if (type(network_stack[i][-1]) != list):
                if (network_stack[i][-1]["name"] in ["add", "concatenate"]):
                    is_block = False

            if (is_block):
                block, G, count, sequential_second, position, _ = create_block(
                    network_stack[i], count, G, sequential_first, position,
                    current_width)
                sequential_first = sequential_second
                net.add(block)
            else:
                branch_end_points = []
                branch_max_length = 0
                branches = []
                branch_net = []

                #if(max_width < len(network_stack[i])-2):
                #    max_width = len(network_stack[i])-2;
                max_width = current_width
                width = current_width
                for j in range(len(network_stack[i]) - 1):
                    small_net = []
                    branch_net.append(nn.HybridSequential())
                    branch_first = sequential_first
                    branch_position = position
                    column = max((j + 1) * 2 + current_width, width)
                    max_width = column
                    for k in range(len(network_stack[i][j])):
                        if type(network_stack[i][j][k]) == list:
                            is_block2 = True

                            if (type(network_stack[i][j][k][-1]) != list):
                                if (network_stack[i][j][k][-1]["name"]
                                        in ["add", "concatenate"]):
                                    is_block2 = False

                            if (is_block2):
                                block, G, count, branch_second, branch_position, width = create_block(
                                    network_stack[i][j][k], count, G,
                                    branch_first, branch_position,
                                    column - 2)  #j+k+width
                            else:
                                block, G, count, branch_second, branch_position, width = create_block(
                                    [network_stack[i][j][k]], count, G,
                                    branch_first, branch_position,
                                    column - 2)  #j+k+width
                            branch_first = branch_second
                            small_net.append(block)
                            branch_net[j].add(block)
                        else:
                            branch_second, count = get_layer_uid(
                                network_stack[i][j][k], count)
                            small_net.append(
                                custom_model_get_layer(network_stack[i][j][k]))
                            branch_net[j].add(
                                custom_model_get_layer(network_stack[i][j][k]))
                            G.add_node(branch_second,
                                       pos=(column, branch_position))
                            branch_position += 1
                            G.add_edge(branch_first, branch_second)
                            branch_first = branch_second

                        branch_max_length = max(branch_position,
                                                branch_max_length)
                        if (k == len(network_stack[i][j]) - 1):
                            branch_end_points.append(branch_second)
                    branches.append(small_net)

                position = branch_max_length
                position += 1
                max_width += 2

                sequential_second, count = get_layer_uid(
                    network_stack[i][-1], count)
                if (network_stack[i][-1]["name"] == "concatenate"):
                    subnetwork = contrib_nn.HybridConcurrent(axis=1)
                    for j in range(len(network_stack[i]) - 1):
                        subnetwork.add(branch_net[j])
                else:
                    subnetwork = addBlock(branches)

                G.add_node(sequential_second,
                           pos=(2 + current_width, position))
                position += 1
                for i in range(len(branch_end_points)):
                    G.add_edge(branch_end_points[i], sequential_second)
                sequential_first = sequential_second
                net.add(subnetwork)
        else:
            sequential_second, count = get_layer_uid(network_stack[i], count)
            net.add(custom_model_get_layer(network_stack[i]))
            G.add_node(sequential_second, pos=(2 + current_width, position))
            position += 1
            G.add_edge(sequential_first, sequential_second)
            sequential_first = sequential_second

    return net, G, count, sequential_second, position, max_width