Example #1
0
def crop_xml(args, xml, sub_set_crop_path, instance_size=511):
    """
    Dataset curation

    Parameters
    ----------
    xml: str , xml
    sub_set_crop_path: str, xml crop path
    instance_size: int, instance_size
    """
    cv2 = try_import_cv2()
    xmltree = ET.parse(xml)
    objects = xmltree.findall('object')

    frame_crop_base_path = os.path.join(sub_set_crop_path, xml.split('/')[-1].split('.')[0])
    if not os.path.isdir(frame_crop_base_path):
        makedirs(frame_crop_base_path)
    img_path = xml.replace('xml', 'JPEG').replace('Annotations', 'Data')
    im = cv2.imread(img_path)
    avg_chans = np.mean(im, axis=(0, 1))

    for id, object_iter in enumerate(objects):
        bndbox = object_iter.find('bndbox')
        bbox = [int(bndbox.find('xmin').text), int(bndbox.find('ymin').text),
                int(bndbox.find('xmax').text), int(bndbox.find('ymax').text)]
        z, x = crop_like_SiamFC(im, bbox, instance_size=instance_size, padding=avg_chans)
        cv2.imwrite(os.path.join(args.download_dir, frame_crop_base_path, '{:06d}.{:02d}.z.jpg'.format(0, id)), z)
        cv2.imwrite(os.path.join(args.download_dir, frame_crop_base_path, '{:06d}.{:02d}.x.jpg'.format(0, id)), x)
Example #2
0
def crop_video(args, sub_set, video, crop_path, ann_base_path):
    """
    Dataset curation

    Parameters
    ----------
    sub_set: str , sub_set
    video: str, video number
    crop_path: str, crop_path
    ann_base_path: str, Annotations base path
    """
    cv2 = try_import_cv2()
    video_crop_base_path = os.path.join(crop_path, sub_set, video)
    if not os.path.isdir(video_crop_base_path):
        makedirs(video_crop_base_path)
    sub_set_base_path = os.path.join(ann_base_path, sub_set)
    xmls = sorted(glob.glob(os.path.join(sub_set_base_path, video, '*.xml')))
    for xml in xmls:
        xmltree = ET.parse(xml)
        objects = xmltree.findall('object')
        objs = []
        filename = xmltree.findall('filename')[0].text
        im = cv2.imread(xml.replace('xml', 'JPEG').replace('Annotations', 'Data'))
        avg_chans = np.mean(im, axis=(0, 1))
        for object_iter in objects:
            trackid = int(object_iter.find('trackid').text)
            bndbox = object_iter.find('bndbox')
            bbox = [int(bndbox.find('xmin').text), int(bndbox.find('ymin').text),
                    int(bndbox.find('xmax').text), int(bndbox.find('ymax').text)]
            z, x = crop_like_SiamFC(im, bbox, instance_size=args.instance_size, padding=avg_chans)
            cv2.imwrite(os.path.join(args.download_dir, video_crop_base_path, '{:06d}.{:02d}.z.jpg'.format(int(filename), trackid)), z)
            cv2.imwrite(os.path.join(args.download_dir, video_crop_base_path, '{:06d}.{:02d}.x.jpg'.format(int(filename), trackid)), x)
Example #3
0
def crop_img(img, anns, set_crop_base_path, set_img_base_path, instance_size=511):
    """
    Dataset curation

    Parameters
    ----------
    img: dic, img
    anns: str, video number
    set_crop_base_path: str, crop result path
    set_img_base_path: str, ori image path
    """
    frame_crop_base_path = os.path.join(set_crop_base_path, img['file_name'].split('/')[-1].split('.')[0])
    if not os.path.isdir(frame_crop_base_path): makedirs(frame_crop_base_path)
    cv2 = try_import_cv2()
    im = cv2.imread('{}/{}'.format(set_img_base_path, img['file_name']))
    avg_chans = np.mean(im, axis=(0, 1))
    for trackid, ann in enumerate(anns):
        rect = ann['bbox']
        bbox = [rect[0], rect[1], rect[0] + rect[2], rect[1] + rect[3]]
        if rect[2] <= 0 or rect[3] <= 0:
            continue
        z, x = crop_like_SiamFC(im, bbox, instance_size=instance_size, padding=avg_chans)
        cv2.imwrite(os.path.join(args.download_dir, frame_crop_base_path, '{:06d}.{:02d}.z.jpg'.format(0, trackid)), z)
        cv2.imwrite(os.path.join(args.download_dir, frame_crop_base_path, '{:06d}.{:02d}.x.jpg'.format(0, trackid)), x)