bin_log_probs=mx.nd.uniform(shape=BATCH_SHAPE + (23, )), bin_centers=mx.nd.array(np.logspace(-1, 1, 23)) + mx.nd.zeros(BATCH_SHAPE + (23, )), ), [ bij.AffineTransformation( scale=1e-1 + mx.nd.random.uniform(shape=BATCH_SHAPE)), bij.softrelu, ], ), Gaussian( mu=mx.nd.zeros(shape=BATCH_SHAPE), sigma=mx.nd.ones(shape=BATCH_SHAPE), ), Gamma( alpha=mx.nd.ones(shape=BATCH_SHAPE), beta=mx.nd.ones(shape=BATCH_SHAPE), ), Beta( alpha=0.5 * mx.nd.ones(shape=BATCH_SHAPE), beta=0.5 * mx.nd.ones(shape=BATCH_SHAPE), ), StudentT( mu=mx.nd.zeros(shape=BATCH_SHAPE), sigma=mx.nd.ones(shape=BATCH_SHAPE), nu=mx.nd.ones(shape=BATCH_SHAPE), ), Dirichlet(alpha=mx.nd.ones(shape=BATCH_SHAPE)), Laplace(mu=mx.nd.zeros(shape=BATCH_SHAPE), b=mx.nd.ones(shape=BATCH_SHAPE)), NegativeBinomial( mu=mx.nd.zeros(shape=BATCH_SHAPE),
trainer.step(1) distr_args = args_proj(input) d = mdo.distribution(distr_args) return d @pytest.mark.parametrize( "mixture_distribution, mixture_distribution_output, epochs", [ ( MixtureDistribution( mixture_probs=mx.nd.array([[0.6, 0.4]]), components=[ Gaussian(mu=mx.nd.array([-1.0]), sigma=mx.nd.array([0.2])), Gamma(alpha=mx.nd.array([2.0]), beta=mx.nd.array([0.5])), ], ), MixtureDistributionOutput([GaussianOutput(), GammaOutput()]), 2_000, ), ( MixtureDistribution( mixture_probs=mx.nd.array([[0.7, 0.3]]), components=[ Gaussian(mu=mx.nd.array([-1.0]), sigma=mx.nd.array([0.2])), GenPareto(xi=mx.nd.array([0.6]), beta=mx.nd.array([1.0])), ], ), MixtureDistributionOutput([GaussianOutput(),
@pytest.mark.parametrize( "distr, expected_batch_shape, expected_event_shape", [ ( Gaussian( mu=mx.nd.zeros(shape=(3, 4, 5)), sigma=mx.nd.ones(shape=(3, 4, 5)), ), (3, 4, 5), (), ), ( Gamma( alpha=mx.nd.ones(shape=(3, 4, 5)), beta=mx.nd.ones(shape=(3, 4, 5)), ), (3, 4, 5), (), ), ( Beta( alpha=mx.nd.ones(shape=(3, 4, 5)), beta=mx.nd.ones(shape=(3, 4, 5)), ), (3, 4, 5), (), ), ( StudentT( mu=mx.nd.zeros(shape=(3, 4, 5)),