Example #1
0
def main(datapath, ubmpath, gmmPath):
    fpaths = get_training_data_fpaths(datapath)
    #    print "The fpath is :",fpaths
    X_train, y_train = datautil.read_data(fpaths)
    ubm = GMM.load(ubmpath)
    for x, y in zip(X_train, y_train):
        gmm = GMM(concurrency=8, threshold=0.01, nr_iteration=100, verbosity=1)
        start = time.time()
        gmm.fit(x, ubm=ubm)
        # score = gmm.score(X_train[0])
        # print(gmm.weights_)
        # score_ubm = ubm.score(X_train[0])
        # print(sum(score))
        # print(sum(score_ubm))
        # score_all = gmm.score_all(X_train[6])
        # score_all_ubm = ubm.score_all(X_train[6])
        # print(str(score_all) + " score_all")
        # print(str(score_all_ubm) + " score_all")
        # print(str(score_all/score_all_ubm) + " score_all")
        end = time.time()
        print(str(end - start) + " seconds")
        gmm.dump(os.path.join(gmmPath, y + ".model"))
        print(os.path.join(gmmPath, y + ".model"))
Example #2
0
 def fit_new(self, x, label):
     self.y.append(label)
     gmm = GMM(self.gmm_order, **self.kwargs)
     gmm.fit(x, self.ubm)
     self.gmms.append(gmm)
 def fit_new(self, x, label):
     self.y.append(label)
     gmm = GMM(self.gmm_order)
     gmm.fit(x)
     self.gmms.append(gmm)
Example #4
0
 def fit_new(self, x, label):
     self.y.append(label)
     gmm = GMM(self.gmm_order)
     gmm.fit(x)
     self.gmms.append(gmm)
Example #5
0
 def fit_new(self, x, label):
     self.y.append(label)
     gmm = GMM(self.gmm_order, **self.kwargs)
     gmm.fit(x, self.ubm)
     self.gmms.append(gmm)