Example #1
0
def test_all_pickers():
    streams = get_streams()
    picker_config = get_config(section='pickers')
    methods = ['ar', 'baer', 'power', 'kalkan']
    columns = ['Stream', 'Method', 'Pick_Time', 'Mean_SNR']
    df = pd.DataFrame(columns=columns)
    for stream in streams:
        print(stream.get_id())
        for method in methods:
            try:
                if method == 'ar':
                    loc, mean_snr = pick_ar(stream,
                                            picker_config=picker_config)
                elif method == 'baer':
                    loc, mean_snr = pick_baer(stream,
                                              picker_config=picker_config)
                elif method == 'power':
                    loc, mean_snr = pick_power(stream,
                                               picker_config=picker_config)
                elif method == 'kalkan':
                    loc, mean_snr = pick_kalkan(stream,
                                                picker_config=picker_config)
                elif method == 'yeck':
                    loc, mean_snr = pick_yeck(stream)
            except GMProcessException:
                loc = -1
                mean_snr = np.nan
            row = {
                'Stream': stream.get_id(),
                'Method': method,
                'Pick_Time': loc,
                'Mean_SNR': mean_snr
            }
            df = df.append(row, ignore_index=True)

    stations = df['Stream'].unique()
    cmpdict = {
        'TW.ECU.BN': 'kalkan',
        'TW.ELD.BN': 'power',
        'TW.EGF.BN': 'ar',
        'TW.EAS.BN': 'ar',
        'TW.EDH.BN': 'ar',
        'TK.4304.HN': 'ar',
        'TK.0921.HN': 'ar',
        'TK.5405.HN': 'ar',
        'NZ.HSES.HN': 'baer',
        'NZ.WTMC.HN': 'baer',
        'NZ.THZ.HN': 'power'
    }
    for station in stations:
        station_df = df[df['Stream'] == station]
        max_snr = station_df['Mean_SNR'].max()
        maxrow = station_df[station_df['Mean_SNR'] == max_snr].iloc[0]
        method = maxrow['Method']
        try:
            assert cmpdict[station] == method
        except Exception as e:
            x = 1
def test_all_pickers():
    streams = get_streams()
    picker_config = get_config(section='pickers')
    methods = ['ar', 'baer', 'power', 'kalkan']
    columns = ['Stream', 'Method', 'Pick_Time', 'Mean_SNR']
    df = pd.DataFrame(columns=columns)
    for stream in streams:
        print(stream.get_id())
        for method in methods:
            try:
                if method == 'ar':
                    loc, mean_snr = pick_ar(
                        stream, picker_config=picker_config)
                elif method == 'baer':
                    loc, mean_snr = pick_baer(
                        stream, picker_config=picker_config)
                elif method == 'power':
                    loc, mean_snr = pick_power(
                        stream, picker_config=picker_config)
                elif method == 'kalkan':
                    loc, mean_snr = pick_kalkan(stream,
                                                picker_config=picker_config)
                elif method == 'yeck':
                    loc, mean_snr = pick_yeck(stream)
            except GMProcessException:
                loc = -1
                mean_snr = np.nan
            row = {'Stream': stream.get_id(),
                   'Method': method,
                   'Pick_Time': loc,
                   'Mean_SNR': mean_snr}
            df = df.append(row, ignore_index=True)

    stations = df['Stream'].unique()
    cmpdict = {'TW.ECU.BN': 'kalkan',
               'TW.ELD.BN': 'ar',
               'TW.EGF.BN': 'ar',
               'TW.EAS.BN': 'ar',
               'TW.EDH.BN': 'ar',
               'TK.4304.HN': 'ar',
               'TK.0921.HN': 'ar',
               'TK.5405.HN': 'ar',
               'NZ.HSES.HN': 'baer',
               'NZ.WTMC.HN': 'baer',
               'NZ.THZ.HN': 'power'}
    for station in stations:
        station_df = df[df['Stream'] == station]
        max_snr = station_df['Mean_SNR'].max()
        maxrow = station_df[station_df['Mean_SNR'] == max_snr].iloc[0]
        method = maxrow['Method']
        assert cmpdict[station] == method
def signal_split(st, origin, picker_config=None, config=None):
    """
    This method tries to identifies the boundary between the noise and signal
    for the waveform. The split time is placed inside the
    'processing_parameters' key of the trace stats.

    The P-wave arrival is used as the split between the noise and signal
    windows. Multiple picker methods are suppored and can be configured in the
    config file
    '~/.gmprocess/picker.yml

    Args:
        st (StationStream):
            Stream of data.
        origin (ScalarEvent):
            ScalarEvent object.
        picker_config (dict):
            Dictionary containing picker configuration information.
        config (dict):
            Dictionary containing system configuration information.

    Returns:
        trace with stats dict updated to include a
        stats['processing_parameters']['signal_split'] dictionary.
    """
    if picker_config is None:
        picker_config = get_config(section='pickers')
    if config is None:
        config = get_config()

    loc, mean_snr = pick_travel(st, origin, picker_config=picker_config)
    if loc > 0:
        tsplit = st[0].stats.starttime + loc
        preferred_picker = 'travel_time'
    else:
        pick_methods = ['ar', 'baer', 'power', 'kalkan']
        columns = ['Stream', 'Method', 'Pick_Time', 'Mean_SNR']
        df = pd.DataFrame(columns=columns)
        for pick_method in pick_methods:
            try:
                if pick_method == 'ar':
                    loc, mean_snr = pick_ar(st,
                                            picker_config=picker_config,
                                            config=config)
                elif pick_method == 'baer':
                    loc, mean_snr = pick_baer(st,
                                              picker_config=picker_config,
                                              config=config)
                elif pick_method == 'power':
                    loc, mean_snr = pick_power(st,
                                               picker_config=picker_config,
                                               config=config)
                elif pick_method == 'kalkan':
                    loc, mean_snr = pick_kalkan(st,
                                                picker_config=picker_config,
                                                config=config)
                elif pick_method == 'yeck':
                    loc, mean_snr = pick_kalkan(st)
            except Exception:
                loc = -1
                mean_snr = np.nan
            row = {
                'Stream': st.get_id(),
                'Method': pick_method,
                'Pick_Time': loc,
                'Mean_SNR': mean_snr
            }
            df = df.append(row, ignore_index=True)

        max_snr = df['Mean_SNR'].max()
        if not np.isnan(max_snr):
            maxrow = df[df['Mean_SNR'] == max_snr].iloc[0]
            tsplit = st[0].stats.starttime + maxrow['Pick_Time']
            preferred_picker = maxrow['Method']
        else:
            tsplit = -1

    if tsplit >= st[0].stats.starttime:
        # Update trace params
        split_params = {
            'split_time': tsplit,
            'method': 'p_arrival',
            'picker_type': preferred_picker
        }
        for tr in st:
            tr.setParameter('signal_split', split_params)

    return st
def signal_split(
        st, origin,
        picker_config=None,
        config=None):
    """
    This method tries to identifies the boundary between the noise and signal
    for the waveform. The split time is placed inside the
    'processing_parameters' key of the trace stats.

    The P-wave arrival is used as the split between the noise and signal
    windows. Multiple picker methods are suppored and can be configured in the
    config file
    '~/.gmprocess/picker.yml

    Args:
        st (StationStream):
            Stream of data.
        origin (ScalarEvent):
            ScalarEvent object.
        picker_config (dict):
            Dictionary containing picker configuration information.
        config (dict):
            Dictionary containing system configuration information.

    Returns:
        trace with stats dict updated to include a
        stats['processing_parameters']['signal_split'] dictionary.
    """
    if picker_config is None:
        picker_config = get_config(section='pickers')
    if config is None:
        config = get_config()

    loc, mean_snr = pick_travel(st, origin,
                                picker_config=picker_config)
    if loc > 0:
        tsplit = st[0].stats.starttime + loc
        preferred_picker = 'travel_time'
    else:
        pick_methods = ['ar', 'baer', 'power', 'kalkan']
        columns = ['Stream', 'Method', 'Pick_Time', 'Mean_SNR']
        df = pd.DataFrame(columns=columns)
        for pick_method in pick_methods:
            try:
                if pick_method == 'ar':
                    loc, mean_snr = pick_ar(
                        st, picker_config=picker_config, config=config)
                elif pick_method == 'baer':
                    loc, mean_snr = pick_baer(
                        st, picker_config=picker_config, config=config)
                elif pick_method == 'power':
                    loc, mean_snr = pick_power(
                        st, picker_config=picker_config, config=config)
                elif pick_method == 'kalkan':
                    loc, mean_snr = pick_kalkan(st,
                                                picker_config=picker_config,
                                                config=config)
                elif pick_method == 'yeck':
                    loc, mean_snr = pick_kalkan(st)
            except Exception:
                loc = -1
                mean_snr = np.nan
            row = {'Stream': st.get_id(),
                   'Method': pick_method,
                   'Pick_Time': loc,
                   'Mean_SNR': mean_snr}
            df = df.append(row, ignore_index=True)

        max_snr = df['Mean_SNR'].max()
        if not np.isnan(max_snr):
            maxrow = df[df['Mean_SNR'] == max_snr].iloc[0]
            tsplit = st[0].stats.starttime + maxrow['Pick_Time']
            preferred_picker = maxrow['Method']
        else:
            tsplit = -1

    if tsplit >= st[0].stats.starttime:
        # Update trace params
        split_params = {
            'split_time': tsplit,
            'method': 'p_arrival',
            'picker_type': preferred_picker
        }
        for tr in st:
            tr.setParameter('signal_split', split_params)

    return st