def model_files_by_timestamp(dirpath): """ List all available model files by timestamp, most recent first """ models = {} model_files = read_dir(dirpath) for f in model_files: filepath = dirpath + '/' + f ts = os.path.getmtime(filepath) models[ts] = filepath return sorted( models.items(), key=lambda x: x[0], reverse=True ) # "reverse", because we want the highest timestamps (most recent) first
def model_files_by_F1(dirpath): """ List all available model files by loss """ models = {} model_dirs = read_dir(dirpath) for f in model_dirs: fv = re.sub(r'^F', '', f) fv = re.sub(r'_E\d+_B\d+$', '', fv) F_val = float(fv) modelpath = dirpath + '/' + f models[modelpath] = F_val return sorted(models.items(), key=lambda x: x[1], reverse=True)
def model_files_by_loss(dirpath): """ List all available model files by loss """ models = {} model_dirs = read_dir(dirpath) for f in model_dirs: lv = re.sub(r'^F', '', f) lv = re.sub(r'_E\d+_B\d+$', '', lv) loss_val = float(lv) modelpath = dirpath + '/' + f models[modelpath] = loss_val return sorted(models.items(), key=lambda x: x[1])
def model_files_by_loss(self): """ List all available model files by loss """ models = {} model_files = read_dir(self.get('model_dir')) for f in model_files: if re.search('^loss_', f): lv = re.sub(r'^loss_', '', f) lv = re.sub(r'\.json\.gz$', '', lv) loss_val = float(lv) models[loss_val] = self.get('model_dir') + '/' + f return sorted(models.items(), key=lambda x: x[0])
def model_files_by_timestamp(self): """ List all available model files by timestamp, most recent first """ models = {} model_files = read_dir(self.get('model_dir')) for f in model_files: if re.search('^loss_', f): filepath = self.get('model_dir') + '/' + f ts = os.path.getmtime(filepath) models[ts] = filepath return sorted( models.items(), key=lambda x: x[0], reverse=True ) # "reverse", because we want the highest timestamps (most recent) first
def default_read_data_dir(input_dir): """ Default function for reading data from a directory into a Dataset Parameters ---------- input_dir : str Directory where each file will be read Returns ------- array of DataFrame (4 of them: x_train, x_test, y_train, y_test) """ files = read_dir(input_dir, {'fullpath': True}) return default_read_data_files(files)
def model_files_by_pcc(dirpath): """ List all available model files by PCC """ models = {} model_dirs = read_dir(dirpath) for f in model_dirs: if re.search(r'^PCC', f): lv = re.sub(r'^PCC', '', f) lv = re.sub(r'_E\d+_B\d+$', '', lv) try: loss_val = float(lv) modelpath = dirpath + '/' + f models[modelpath] = loss_val except: pass return sorted(models.items(), key=lambda x: x[1], reverse=True)