Example #1
0
def test_shifting_edges_2():
    param = env.defparameter("param", central=0.1, fixed=True)
    placeholder = env.defparameter("placeholder", central=1, fixed=True)
    
    initial_binning = np.arange(1, 10, 0.5)

    initial_integrator = C.IntegratorGL(initial_binning, 4, labels = (('First Sampler', 'First Integrator')))
    print("Integration edges from first integral")
    print(initial_integrator.points.xedges.data())

    from gna.constructors import stdvector
    shifted = R.WeightedSum(-2*param.value(), stdvector(['placeholder']), stdvector(['inp']))
    shifted.sum.inp(initial_integrator.points.xedges)
    print("After shift by -2*{}".format(param.value()))
    print(shifted.sum.sum.data())
    expected = initial_binning - 2*param.value()
    assert np.allclose(expected, shifted.sum.sum.data())
Example #2
0
def test_shifting_edges_1():
    par = env.defparameter("par", central=0.1, fixed=True)
    dummy = env.defparameter("dummy", central=1, fixed=True)
    
    initial_binning = np.arange(1, 10, 0.5)

    initial_integrator = C.IntegratorGL(initial_binning, 4, labels = (('First Sampler', 'First Integrator')))
    print("Integration edges from first integral")
    print(initial_integrator.points.xedges.data())

    filled = C.FillLike(-2)
    initial_integrator.points.xedges >> filled.fill
    outputs = [par.single(), filled.single(), dummy.single(), initial_integrator.points.xedges]
    shifted = C.WeightedSumP(outputs)
    print("After shift by -2*{}".format(par.value()))
    print(shifted.sum.sum.data())
    expected = initial_binning - 2*par.value()
    assert np.allclose(expected, shifted.sum.sum.data())
Example #3
0
def test_shifting_edges_3():
    param = env.defparameter("param1", central=0.1, fixed=True)
    placeholder = env.defparameter("placeholder1", central=1, fixed=True)
    
    initial_binning = np.arange(1, 10, 0.5)

    initial_integrator = C.IntegratorGL(initial_binning, 4, labels = (('First Sampler', 'First Integrator')))
    print("Integration edges from first integral")
    print(initial_integrator.points.xedges.data())

    param_point = C.Points([-2*param.value()])
    inputs = [param_point.points.points, initial_integrator.points.xedges]
               
    shifted = C.SumBroadcast(inputs)

    print("After shift by -2*{}".format(param.value()))
    print(shifted.single().data())
    expected = initial_binning - 2*param.value()
    assert np.allclose(expected, shifted.single().data())
Example #4
0
def test_fixed():
    env.defparameter('probe1', central=0., sigma=1.)
    env.defparameter('probe2', central=0., sigma=1.)
    env.defparameter('probe3', central=0., sigma=1.)
    env.defparameter('probe_fixed', central=0., sigma=1., fixed=True)

    print()
    msg = 'Testing that par {0} is created fixed'
    print(msg.format(env.parameters['probe_fixed'].name()))
    assert env.parameters['probe_fixed'].isFixed() == True
    print('It is!\n')

    print("Checks whether get_parameters() discards fixed params by default:")
    no_fixed = [_.name() for _ in get_parameters(['probe1', 'probe_fixed'])]
    assert 'probe1' in no_fixed
    print('True!\n')

    print("Checks that get_parameters(drop_fixed=False) keeps parameters:")
    with_fixed = [
        par.name()
        for par in get_parameters(['probe1', 'probe_fixed'], drop_fixed=False)
    ]
    assert 'probe1' in with_fixed and 'probe_fixed' in with_fixed
    print('True!\n')
Example #5
0
#!/usr/bin/env python
from load import ROOT
from gna.env import env
from gna.parameters.parameter_loader import get_parameters
from gna import parameters

parameters.debug = True

# Necessary evil, it triggers import of all other symbols from shared library
ROOT.GNAObject
Param_Double = ROOT.GaussianParameter('double')

env.defparameter('absolute sigma 1', central=0., sigma=1.)
env.defparameter('absolute sigma 2', central=2., sigma=0.1)
env.defparameter('relative sigma 1', central=0., relsigma=0.1)
env.defparameter('relative sigma 2', central=2., relsigma=0.1)

print()
env.defparameter('absolute sigma 3',
                 central=2.,
                 uncertainty=0.1,
                 uncertainty_type='absolute')
env.defparameter('relative sigma 3',
                 central=2.,
                 uncertainty=0.1,
                 uncertainty_type='relative')
gp = env.defparameter('absolute sigma with limits',
                      central=2.,
                      relsigma=0.1,
                      limits=[0.0, 3.0])
gp1 = env.defparameter('absolute sigma with limits 1',
Example #6
0
    ax.set_title(title)
    return ax


def singularities(values, edges):
    indices = N.digitize(values, edges) - 1
    phist = N.zeros(edges.size - 1)
    phist[indices] = 1.0
    return phist


#
# Define the parameters in the current namespace
#
percent = 0.01
env.defparameter('Eres_a', central=0.016, relsigma=30 * percent)
env.defparameter('Eres_b', central=0.081, relsigma=30 * percent)
env.defparameter('Eres_c', central=0.026, relsigma=30 * percent)
print_parameters(env.globalns)

#
# Define bin edges
#
binwidth = 0.05
edges = N.arange(0.0, 12.0001, binwidth)
efine = N.arange(edges[0], edges[-1] + 1.e-5, 0.005)

for eset in [
    [[1.025], [3.025], [6.025], [9.025]],
    [[1.025, 5.025, 9.025]],
    [[6.025, 7.025, 8.025, 8.825]],
Example #7
0
                    default=1,
                    type=int,
                    help='number of diagonals')
parser.add_argument(
    '-u',
    '--upper',
    action='store_true',
    help='force transformation to account for upper triangular matrix')
parser.add_argument(
    '-o',
    '--offdiag',
    action='store_true',
    help='force transformation to account for upper triangular matrix')
opts = parser.parse_args()

env.defparameter('DiagScale', central=opts.value, relsigma=0.1)

mat = N.matrix(N.arange(16.0).reshape(4, 4))
print('Raw matrix')
print(mat)

print('Sum over rows')

print(mat.A.sum(axis=0))
print('Raw normalized matrix')
print(mat.A / mat.A.sum(axis=0))

pmat = C.Points(mat)

rd = R.RenormalizeDiag(opts.ndiag, int(opts.offdiag), int(opts.upper))
rd.renorm.inmat(pmat.points)
Example #8
0
    ax.minorticks_on()
    ax.grid()
    ax.set_xlabel(L.u('evis'))
    ax.set_ylabel(ylabel)
    ax.set_title(title)
    return ax


def singularities(values, edges):
    indices = N.digitize(values, edges) - 1
    phist = N.zeros(edges.size - 1)
    phist[indices] = 1.0
    return phist


par = env.defparameter('DiagScale', central=1.0, relsigma=0.1)
binwidth = 0.05
edges = N.arange(0.0, 12.0001, binwidth)

n = 240
mat = 0.0
for i in range(n):
    if i < 4:
        scale = 1.0 - i * 0.2
    else:
        scale = 0.00005 * (n - i)
    if i:
        mat += N.diag(N.full(n - i, scale), i)
        if not opts.upper:
            mat += N.diag(N.full(n - i, scale), -i)
    else:
Example #9
0
def test_par_loader():
    probe1 = env.defparameter('probe1', central=0., sigma=1.)
    probe2 = env.defparameter('probe2', central=0., sigma=1.)
    probe3 = env.defparameter('probe3', central=0., sigma=1.)
    test_ns = env.ns('test_ns')
    test1 = test_ns.defparameter('test1', central=1., sigma=0.1)
    test2 = test_ns.defparameter('test2', central=1., sigma=0.1)
    test3 = test_ns.defparameter('test3', central=1., sigma=0.1)
    test4 = test_ns.defparameter('test4', central=1., sigma=0.1)
    extra_test_ns = env.ns('extra_test_ns')
    extra1 = extra_test_ns.defparameter('extra1', central=1., sigma=0.1)

    for name, par in test_ns.walknames():
        print("Par in namespace", name)

    print()
    print("Quering pars with get_parameters() ")
    par1 = get_parameters(['probe1'])
    assert (par1[0] == probe1)
    print('Got global parameter {}'.format(par1[0].name()))
    print()
    par2 = get_parameters(['test_ns.test1'])
    assert (par2[0] == test1)
    print('Got parameter {0} from namespace {1}'.format(
        par2[0].name(), test_ns.name))

    print()

    par_in_namespace = get_parameters(['test_ns'])
    assert (par_in_namespace == [test1, test2, test3, test4])
    print()
    print('Got parameters {0} from ns {ns}'.format(
        [_.name() for _ in par_in_namespace], ns=test_ns.name))
    print()
    par_two_namespaces = get_parameters(['test_ns', 'extra_test_ns'])
    assert (par_two_namespaces == [test1, test2, test3, test4, extra1])
    print()
    print('Got parameters {0} from nses {ns}'.format(
        [_.name() for _ in par_two_namespaces],
        ns=[test_ns.name, extra_test_ns.name]))
    print()

    par_mixed_ns_and_global = get_parameters(['test_ns', 'probe1'])
    print('Got parameters {0} from nses {ns} and global'.format(
        [_.name() for _ in par_mixed_ns_and_global], ns=test_ns.name))
    assert (par_mixed_ns_and_global == [test1, test2, test3, test4, probe1])

    print()

    wildcard = get_parameters(['test_ns*'])
    assert (wildcard == [test1, test2, test3, test4])
    print('Got parameters {0} from by wildcard '.format(
        [_.name() for _ in wildcard]))

    print()

    #Asking for missing parameters, raise KeyError
    try:
        get_parameters(['missing'])
    except KeyError:
        print("KeyError for missing parameter is raised correctly")
Example #10
0
from gna.env import env
from gna.labelfmt import formatter as L
from mpl_tools.helpers import savefig, plot_hist, add_colorbar
from scipy.stats import norm
from gna.converters import convert
from argparse import ArgumentParser
import gna.constructors as C

P.rc('text', usetex=True)

parser = ArgumentParser()
parser.add_argument('-o', '--output')
parser.add_argument('-s', '--show', action='store_true')
opts = parser.parse_args()

env.defparameter("E_0", central=0.165, fixed=True)
env.defparameter("p0", central=-7.26624e+00, fixed=True)
env.defparameter("p1", central=1.72463e+01, fixed=True)
env.defparameter("p2", central=-2.18044e+01, fixed=True)
env.defparameter("p3", central=1.44731e+01, fixed=True)
env.defparameter("p4", central=3.22121e-02, fixed=True)

energy = N.linspace(0.1, 10, num=200)
gna_energy = C.Points(energy)
cherenkov = R.Cherenkov_Borexino()
cherenkov.cherenkov.energy(gna_energy)
ch_response = cherenkov.cherenkov.ch_npe.data()

fig = P.figure()
ax = P.subplot(111)
ax.plot(energy, ch_response)
Example #11
0
def axes(title, ylabel=''):
    fig = P.figure()
    ax = P.subplot(111)
    ax.minorticks_on()
    ax.grid()
    ax.set_xlabel(L.u('evis'))
    ax.set_ylabel(ylabel)
    ax.set_title(title)
    return ax


#
# Define the parameters in the current namespace
#
percent = 0.01
env.defparameter('Eres_a', central=0.0, fixed=True)
par = env.defparameter('Eres_b', central=0.03, fixed=True)
env.defparameter('Eres_c', central=0.0, fixed=True)
print_parameters(env.globalns)

#
# Define bin edges
#
nbins = 40
edges = N.linspace(0.0, 2.0, nbins + 1)
binwidth = edges[1] - edges[0]
centers = (edges[1:] + edges[:-1]) * 0.5
efine = N.arange(edges[0], edges[-1] + 1.e-5, 0.005)

ax = axes('Energy resolution impact')
phist = N.ones(edges.size - 1)
Example #12
0
def test_par_cov():
    probe_1 = env.defparameter('probe1', central=0., sigma=1.)
    probe_2 = env.defparameter('probe2', central=0., sigma=1.)
    probe_3 = env.defparameter('probe3', central=0., sigma=1.)
    test_ns = env.ns('test_ns')
    test_ns.defparameter('test0', central=1., sigma=0.1)
    test_ns.defparameter('test1', central=1., sigma=0.1)
    test_ns.defparameter('test2', central=1., sigma=0.1)
    test_ns.defparameter('test3', central=1., sigma=0.1)
    extra_test_ns = env.ns('extra_test_ns')
    extra1 = extra_test_ns.defparameter('extra1', central=1., sigma=0.1)
    extra2 = extra_test_ns.defparameter('extra2', central=1., sigma=0.1)
    extra3 = extra_test_ns.defparameter('extra3', central=1., sigma=0.1)
    extra4 = extra_test_ns.defparameter('extra4', central=1., sigma=0.1)

    cov1 = 0.1
    print("Setting covariance of probe_1 with probe_2 to {0}".format(cov1))
    probe_1.setCovariance(probe_2, cov1)
    print("Check that they are mutually correlated now.")

    assert probe_1.isCorrelated(probe_2) and probe_2.isCorrelated(probe_1)
    print("Success")
    print("Get covariance from both -- {0} and {1}\n".format(
        probe_1.getCovariance(probe_2), probe_2.getCovariance(probe_1)))

    print("Checks that change of one propagates to another")
    cov2 = 0.2
    probe_1.setCovariance(probe_2, cov2)
    assert (probe_1.getCovariance(probe_2) == cov2
            and probe_2.getCovariance(probe_1) == cov2)
    print("Success\n")

    test_pars = get_parameters(
        ['test_ns.test0', 'test_ns.test1', 'test_ns.test2', 'test_ns.test3'])
    print("Test pars sequence is {}".format([_.name() for _ in test_pars]))
    cov_matrix1 = make_fake_covmat(4)
    print("Test covariance matrix is \n", cov_matrix1)

    ch.covariate_pars(test_pars, cov_matrix1)
    for first, second in itertools.combinations_with_replacement(
            range(len(test_pars)), 2):
        try:
            if first != second:
                assert test_pars[first].getCovariance(
                    test_pars[second]) == cov_matrix1[first, second]
            else:
                assert test_pars[first].sigma() == np.sqrt(cov_matrix1[first,
                                                                       second])
        except AssertionError:
            print((first, second),
                  test_pars[first].getCovariance(test_pars[second])**2,
                  cov_matrix1[first, second])
            raise

    extra_pars = [extra1, extra2, extra3]
    cov_mat_extra = make_fake_covmat(3)
    cov_storage = ch.CovarianceStorage("extra_store", extra_pars,
                                       cov_mat_extra)
    ch.covariate_ns('extra_test_ns', cov_storage)
    for first, second in itertools.combinations_with_replacement(
            range(len(extra_pars)), 2):
        try:
            if first != second:
                assert test_pars[first].getCovariance(
                    test_pars[second]) == cov_matrix1[first, second]
            else:
                assert test_pars[first].sigma() == np.sqrt(cov_matrix1[first,
                                                                       second])
        except AssertionError:
            print((first, second),
                  test_pars[first].getCovariance(test_pars[second])**2,
                  cov_matrix1[first, second])
            raise