Example #1
0
    def from_netCDF(cls,
                    filename=None,
                    grid_topology=None,
                    name=None,
                    units=None,
                    time=None,
                    ice_var=None,
                    ice_conc_var=None,
                    grid=None,
                    dataset=None,
                    grid_file=None,
                    data_file=None,
                    **kwargs):
        if filename is not None:
            data_file = filename
            grid_file = filename

        ds = None
        dg = None
        if dataset is None:
            if grid_file == data_file:
                ds = dg = _get_dataset(grid_file)
            else:
                ds = _get_dataset(data_file)
                dg = _get_dataset(grid_file)
        else:
            ds = dg = dataset

        if grid is None:
            grid = _init_grid(grid_file,
                              grid_topology=grid_topology,
                              dataset=dg)
        if ice_var is None:
            ice_var = IceVelocity.from_netCDF(filename,
                                              grid=grid,
                                              dataset=ds,
                                              **kwargs)
        if time is None:
            time = ice_var.time

        if ice_conc_var is None:
            ice_conc_var = IceConcentration.from_netCDF(filename,
                                                        time=time,
                                                        grid=grid,
                                                        dataset=ds,
                                                        **kwargs)
        if name is None:
            name = 'IceAwareProp'
        if units is None:
            units = ice_var.units
        return cls(name='foo',
                   units=units,
                   time=time,
                   ice_var=ice_var,
                   ice_conc_var=ice_conc_var,
                   grid=grid,
                   grid_file=grid_file,
                   data_file=data_file,
                   **kwargs)
Example #2
0
    def from_netCDF(cls,
                    filename=None,
                    grid_topology=None,
                    name=None,
                    units=None,
                    time=None,
                    ice_var=None,
                    wind_var=None,
                    ice_conc_var=None,
                    grid=None,
                    dataset=None,
                    grid_file=None,
                    data_file=None,
                    **kwargs):

        if filename is not None:
            data_file = filename
            grid_file = filename

        ds = None
        dg = None
        if dataset is None:
            if grid_file == data_file:
                ds = dg = _get_dataset(grid_file)
            else:
                ds = _get_dataset(data_file)
                dg = _get_dataset(grid_file)
        else:
            ds = dg = dataset

        if grid is None:
            grid = _init_grid(grid_file,
                              grid_topology=grid_topology,
                              dataset=dg)
        if wind_var is None:
            wind_var = GridWind.from_netCDF(filename,
                                            time=time,
                                            grid=grid,
                                            dataset=ds,
                                            **kwargs)

        return super(IceAwareWind, cls).from_netCDF(grid_topology=grid_topology,
                                                    name=name,
                                                    units=units,
                                                    time=time,
                                                    ice_var=ice_var,
                                                    wind_var=wind_var,
                                                    ice_conc_var=ice_conc_var,
                                                    grid=grid,
                                                    dataset=ds,
                                                    grid_file=grid_file,
                                                    data_file=data_file,
                                                    **kwargs)
Example #3
0
 def __init__(self,
              name=None,
              units=None,
              time=None,
              variables=None,
              grid=None,
              grid_file=None,
              data_file=None,
              dataset=None,
              **kwargs):
     VelocityGrid.__init__(self,
                           name=name,
                           units=units,
                           time=time,
                           variables=variables,
                           grid=grid,
                           grid_file=grid_file,
                           data_file=data_file,
                           dataset=dataset)
     self.angle = None
     df = None
     if dataset is not None:
         df = dataset
     elif grid_file is not None:
         df = _get_dataset(grid_file)
     if df is not None and 'angle' in df.variables.keys():
         # Unrotated ROMS Grid!
         self.angle = GriddedProp(name='angle', units='radians', time=None, grid=self.grid, data=df['angle'])
Example #4
0
    def _gen_varname(cls,
                     filename=None,
                     dataset=None,
                     names_list=None,
                     std_names_list=None):
        """
        Function to find the default variable names if they are not provided.

        :param filename: Name of file that will be searched for variables
        :param dataset: Existing instance of a netCDF4.Dataset
        :type filename: string
        :type dataset: netCDF.Dataset
        :return: List of default variable names, or None if none are found
        """
        df = None
        if dataset is not None:
            df = dataset
        else:
            df = _get_dataset(filename)
        if names_list is None:
            names_list = cls.default_names
        for n in names_list:
            if n in df.variables.keys():
                return n
        for n in std_names_list:
            for var in df.variables.values():
                if hasattr(var, 'standard_name') or hasattr(var, 'long_name'):
                    if var.name == n:
                        return n
        raise ValueError("Default names not found.")
Example #5
0
    def _find_topology_var(filename, dataset=None):
        gf = _get_dataset(filename, dataset)
        gts = []
        for v in gf.variables:
            if hasattr(v, 'cf_role') and 'topology' in v.cf_role:
                gts.append(v)
#         gts = gf.get_variables_by_attributes(cf_role=lambda t: t is not None and 'topology' in t)
        if len(gts) != 0:
            return gts[0]
        else:
            return None
Example #6
0
            def wrapper(*args, **kws):
                def _mod(n):
                    k = kws
                    s = shared
                    return (n in s) and ((n not in k) or
                                         (n in k and k[n] is None))

                if 'filename' in kws and kws['filename'] is not None:
                    kws['data_file'] = kws['grid_file'] = kws['filename']
                if _mod('dataset'):
                    if 'grid_file' in kws and 'data_file' in kws:
                        if kws['grid_file'] == kws['data_file']:
                            ds = dg = _get_dataset(kws['grid_file'])
                        else:
                            ds = _get_dataset(kws['data_file'])
                            dg = _get_dataset(kws['grid_file'])
                    kws['dataset'] = ds
                else:
                    if 'grid_file' in kws and kws['grid_file'] is not None:
                        dg = _get_dataset(kws['grid_file'])
                    else:
                        dg = kws['dataset']
                    ds = kws['dataset']
                if _mod('grid'):
                    gt = kws.get('grid_topology', None)
                    kws['grid'] = PyGrid.from_netCDF(kws['grid_file'],
                                                     dataset=dg,
                                                     grid_topology=gt)
#                 if kws.get('varnames', None) is None:
#                     varnames = cls._gen_varnames(kws['data_file'],
#                                                  dataset=ds)
#                 if _mod('time'):
#                     time = Time.from_netCDF(filename=kws['data_file'],
#                                             dataset=ds,
#                                             varname=data)
#                     kws['time'] = time
                return func(*args, **kws)
Example #7
0
    def _find_required_grid_attrs(
        cls,
        filename,
        dataset=None,
        grid_topology=None,
    ):
        '''
        This function is the top level 'search for attributes' function. If there are any
        common attributes to all potential grid types, they will be sought here.

        This function returns a dict, which maps an attribute name to a netCDF4
        Variable or numpy array object extracted from the dataset. When called from
        PyGrid_U or PyGrid_S, this function should provide all the kwargs needed to
        create a valid instance.
        '''
        gf_vars = dataset.variables if dataset is not None else _get_dataset(
            filename).variables
        init_args = {}
        init_args['filename'] = filename
        node_attrs = ['node_lon', 'node_lat']
        node_coord_names = [['node_lon', 'node_lat'], ['lon', 'lat'],
                            ['lon_psi', 'lat_psi']]
        composite_node_names = ['nodes', 'node']
        if grid_topology is None:
            for n1, n2 in node_coord_names:
                if n1 in gf_vars and n2 in gf_vars:
                    init_args[node_attrs[0]] = gf_vars[n1][:]
                    init_args[node_attrs[1]] = gf_vars[n2][:]
                    break
            if node_attrs[0] not in init_args:
                for n in composite_node_names:
                    if n in gf_vars:
                        v = gf_vars[n][:].reshape(-1, 2)
                        init_args[node_attrs[0]] = v[:, 0]
                        init_args[node_attrs[1]] = v[:, 1]
                        break
            if node_attrs[0] not in init_args:
                raise ValueError('Unable to find node coordinates.')
        else:
            for n, v in grid_topology.items():
                if n in node_attrs:
                    init_args[n] = gf_vars[v][:]
                if n in composite_node_names:
                    v = gf_vars[n][:].reshape(-1, 2)
                    init_args[node_attrs[0]] = v[:, 0]
                    init_args[node_attrs[1]] = v[:, 1]
        return init_args, gf_vars
Example #8
0
    def _gen_varnames(cls,
                      filename=None,
                      dataset=None,
                      names_dict=None,
                      std_names_dict=None):
        """
        Function to find the default variable names if they are not provided.

        :param filename: Name of file that will be searched for variables
        :param dataset: Existing instance of a netCDF4.Dataset
        :type filename: string
        :type dataset: netCDF.Dataset
        :return: dict of component to name mapping (eg {'u': 'water_u', 'v': 'water_v', etc})
        """
        df = None
        if dataset is not None:
            df = dataset
        else:
            df = _get_dataset(filename)
        if names_dict is None:
            names_dict = cls.default_names
        if std_names_dict is None:
            std_names_dict = cls.cf_names
        rd = {}
        for k in cls.comp_order:
            v = names_dict[k] if k in names_dict else []
            for n in v:
                if n in df.variables.keys():
                    rd[k] = n
                    continue
            if k not in rd.keys():
                rd[k] = None
        for k in cls.comp_order:
            v = std_names_dict[k] if k in std_names_dict else []
            if rd[k] is None:
                for n in v:
                    for var in df.variables.values():
                        if (hasattr(var, 'standard_name')
                                and var.standard_name == n
                                or hasattr(var, 'long_name')
                                and var.long_name == n):
                            rd[k] = var.name
                            break
        return namedtuple('varnames', cls.comp_order)(**rd)
Example #9
0
 def __init__(self,
              bathymetry,
              data_file=None,
              dataset=None,
              terms={},
              **kwargs):
     ds = dataset
     if ds is None:
         if data_file is None:
             data_file = bathymetry.data_file
             if data_file is None:
                 raise ValueError("Need data_file or dataset containing sigma equation terms")
         ds = _get_dataset(data_file)
     self.bathymetry = bathymetry
     self.terms = terms
     if len(terms) == 0:
         for s in S_Depth.default_terms:
             for term in s:
                 self.terms[term] = ds[term][:]
Example #10
0
 def __init__(self,
              bathymetry,
              data_file=None,
              dataset=None,
              terms={},
              **kwargs):
     ds = dataset
     if ds is None:
         if data_file is None:
             data_file = bathymetry.data_file
             if data_file is None:
                 raise ValueError("Need data_file or dataset containing sigma equation terms")
         ds = _get_dataset(data_file)
     self.bathymetry = bathymetry
     self.terms = terms
     if len(terms) == 0:
         for s in S_Depth_T1.default_terms:
             for term in s:
                 self.terms[term] = ds[term][:]
Example #11
0
    def _gen_varnames(cls,
                      filename=None,
                      dataset=None):
        """
        Function to find the default variable names if they are not provided.

        :param filename: Name of file that will be searched for variables
        :param dataset: Existing instance of a netCDF4.Dataset
        :type filename: string
        :type dataset: netCDF.Dataset
        :return: List of default variable names, or None if none are found
        """
        df = None
        if dataset is not None:
            df = dataset
        else:
            df = _get_dataset(filename)
        for n in cls.default_names:
            if all([sn in df.variables.keys() for sn in n]):
                return n
        raise ValueError("Default names not found.")
Example #12
0
 def from_netCDF(cls,
                 filename=None,
                 dataset=None,
                 varname=None,
                 datavar=None,
                 tz_offset=None,
                 **kwargs):
     if dataset is None:
         dataset = _get_dataset(filename)
     if datavar is not None:
         if hasattr(datavar, 'time') and datavar.time in dataset.dimensions.keys():
             varname = datavar.time
         else:
             varname = datavar.dimensions[0] if 'time' in datavar.dimensions[0] else None
             if varname is None:
                 return None
     time = cls(time=dataset[varname],
                filename=filename,
                varname=varname,
                tz_offset=tz_offset,
                **kwargs
                    )
     return time
Example #13
0
    def from_netCDF(cls,
                    filename=None,
                    dataset=None,
                    grid_type=None,
                    grid_topology=None,
                    *args,
                    **kwargs):
        '''
        :param filename: File containing a grid
        :param dataset: Takes precedence over filename, if provided.
        :param grid_type: Must be provided if Dataset does not have a 'grid_type' attribute, or valid topology variable
        :param grid_topology: A dictionary mapping of grid attribute to variable name. Takes precendence over discovered attributes
        :param **kwargs: All kwargs to SGrid or UGrid are valid, and take precedence over all.
        :returns: Instance of PyGrid_U, PyGrid_S, or PyGrid_R
        '''
        gf = dataset if filename is None else _get_dataset(filename, dataset)
        if gf is None:
            raise ValueError('No filename or dataset provided')

        cls = PyGrid._get_grid_type(gf, grid_topology, grid_type)
        init_args, gf_vars = cls._find_required_grid_attrs(
            filename, dataset=dataset, grid_topology=grid_topology)
        return cls(**init_args)
Example #14
0
 def __init__(self, angle=None, **kwargs):
     """
     :param angle: scalar field of cell rotation angles (for rotated/distorted grids)
     """
     if 'variables' in kwargs:
         variables = kwargs['variables']
         if len(variables) == 2:
             variables.append(TimeSeriesProp(name='constant w', data=[0.0], time=Time.constant_time(), units='m/s'))
         kwargs['variables'] = variables
     if angle is None:
         df = None
         if kwargs.get('dataset', None) is not None:
             df = kwargs['dataset']
         elif kwargs.get('grid_file', None) is not None:
             df = _get_dataset(kwargs['grid_file'])
         if df is not None and 'angle' in df.variables.keys():
             # Unrotated ROMS Grid!
             self.angle = GriddedProp(name='angle', units='radians', time=None, grid=kwargs['grid'], data=df['angle'])
         else:
             self.angle = None
     else:
         self.angle = angle
     super(VelocityGrid, self).__init__(**kwargs)
Example #15
0
    def from_netCDF(cls,
                    filename=None,
                    grid_topology=None,
                    name=None,
                    temperature=None,
                    salinity=None,
                    sediment=None,
                    grid=None,
                    dataset=None,
                    grid_file=None,
                    data_file=None):
        if filename is not None:
            data_file = filename
            grid_file = filename

        ds = None
        dg = None
        if dataset is None:
            if grid_file == data_file:
                ds = dg = _get_dataset(grid_file)
            else:
                ds = _get_dataset(data_file)
                dg = _get_dataset(grid_file)
        else:
            ds = dg = dataset

        if grid is None:
            grid = _init_grid(grid_file,
                             grid_topology=grid_topology,
                             dataset=dg)

        if time is None:
            time = ice_var.time

        if temperature is None:
            try:
                temperature = GridTemperature.from_netCDF(filename,
                                                          time=time,
                                                          grid=grid,
                                                          dataset=ds)
            except:
                temperature = 300.
        if salinity is None:
            try:
                salinity = GridSalinity.from_netCDF(filename,
                                                    time=time,
                                                    grid=grid,
                                                    dataset=ds)
            except:
                salinity = 35.
        if sediment is None:
            try:
                sediment = GridSediment.from_netCDF(filename,
                                                    time=time,
                                                    grid=grid,
                                                    dataset=ds)
            except:
                sediment = .005
        if name is None:
            name = 'WaterConditions'
        if units is None:
            units = water_var.units
        return cls(name=name,
                   units=units,
                   time=time,
                   ice_var=ice_var,
                   water_var=water_var,
                   ice_conc_var=ice_conc_var,
                   grid=grid,
                   grid_file=grid_file,
                   data_file=data_file)
Example #16
0
def env_from_netCDF(filename=None,
                    dataset=None,
                    grid_file=None,
                    data_file=None,
                    _cls_list=None,
                    **kwargs):
    '''
    Returns a list of instances of environment objects that can be produced from a file or dataset.
    These instances will be created with a common underlying grid, and will interconnect when possible
    For example, if an IceAwareWind can find an existing IceConcentration, it will use it instead of
    instantiating another. This function tries ALL gridded types by default. This means if a particular
    subclass of object is possible to be built, it is likely that all it's parents will be built and included
    as well.

    If you wish to limit the types of environment objects that will be used, pass a list of the types
    using "_cls_list" kwarg'''
    def attempt_from_netCDF(cls, **klskwargs):
        obj = None
        try:
            obj = c.from_netCDF(**klskwargs)
        except Exception as e:
            import logging
            logging.warn('''Class {0} could not be constituted from netCDF file
                                    Exception: {1}'''.format(c.__name__, e))
        return obj

    from gnome.utilities.file_tools.data_helpers import _get_dataset
    from gnome.environment.environment_objects import GriddedProp, GridVectorProp
    from gnome.environment import PyGrid, Environment
    import copy

    new_env = []

    if filename is not None:
        data_file = filename
        grid_file = filename

    ds = None
    dg = None
    if dataset is None:
        if grid_file == data_file:
            ds = dg = _get_dataset(grid_file)
        else:
            ds = _get_dataset(data_file)
            dg = _get_dataset(grid_file)
    else:
        if grid_file is not None:
            dg = _get_dataset(grid_file)
        else:
            dg = dataset
        ds = dataset
    dataset = ds

    grid = kwargs.pop('grid', None)
    if grid is None:
        grid = PyGrid.from_netCDF(filename=filename, dataset=dg, **kwargs)
        kwargs['grid'] = grid
    scs = copy.copy(
        Environment._subclasses) if _cls_list is None else _cls_list
    for c in scs:
        if issubclass(c, (GriddedProp, GridVectorProp)) and not any(
            [isinstance(o, c) for o in new_env]):
            clskwargs = copy.copy(kwargs)
            obj = None
            try:
                req_refs = c._req_refs
            except AttributeError:
                req_refs = None

            if req_refs is not None:
                for ref, klass in req_refs.items():
                    for o in new_env:
                        if isinstance(o, klass):
                            clskwargs[ref] = o
                    if ref in clskwargs.keys():
                        continue
                    else:
                        obj = attempt_from_netCDF(c,
                                                  filename=filename,
                                                  dataset=dataset,
                                                  grid_file=grid_file,
                                                  data_file=data_file,
                                                  **clskwargs)
                        clskwargs[ref] = obj
                        if obj is not None:
                            new_env.append(obj)

            obj = attempt_from_netCDF(c,
                                      filename=filename,
                                      dataset=dataset,
                                      grid_file=grid_file,
                                      data_file=data_file,
                                      **clskwargs)
            if obj is not None:
                new_env.append(obj)
    return new_env
Example #17
0
    def from_netCDF(cls,
                    filename=None,
                    varname=None,
                    grid_topology=None,
                    name=None,
                    units=None,
                    time=None,
                    grid=None,
                    depth=None,
                    dataset=None,
                    data_file=None,
                    grid_file=None,
                    load_all=False,
                    fill_value=0,
                    **kwargs
                    ):
        '''
        Allows one-function creation of a GriddedProp from a file.

        :param filename: Default data source. Parameters below take precedence
        :param varname: Name of the variable in the data source file
        :param grid_topology: Description of the relationship between grid attributes and variable names.
        :param name: Name of property
        :param units: Units
        :param time: Time axis of the data
        :param data: Underlying data source
        :param grid: Grid that the data corresponds with
        :param depth: Depth axis object
        :param dataset: Instance of open Dataset
        :param data_file: Name of data source file
        :param grid_file: Name of grid source file
        :type filename: string
        :type varname: string
        :type grid_topology: {string : string, ...}
        :type name: string
        :type units: string
        :type time: [] of datetime.datetime, netCDF4 Variable, or Time object
        :type data: netCDF4.Variable or numpy.array
        :type grid: pysgrid or pyugrid
        :type S_Depth or L_Depth
        :type dataset: netCDF4.Dataset
        :type data_file: string
        :type grid_file: string
        '''
        if filename is not None:
            data_file = filename
            grid_file = filename

        ds = None
        dg = None
        if dataset is None:
            if grid_file == data_file:
                ds = dg = _get_dataset(grid_file)
            else:
                ds = _get_dataset(data_file)
                dg = _get_dataset(grid_file)
        else:
            if grid_file is not None:
                dg = _get_dataset(grid_file)
            else:
                dg = dataset
            ds = dataset

        if grid is None:
            grid = _init_grid(grid_file,
                              grid_topology=grid_topology,
                              dataset=dg)
        if varname is None:
            varname = cls._gen_varname(data_file,
                                       dataset=ds)
            if varname is None:
                raise NameError('Default current names are not in the data file, must supply variable name')
        data = ds[varname]
        if name is None:
            name = cls.__name__ + str(cls._def_count)
            cls._def_count += 1
        if units is None:
            try:
                units = data.units
            except AttributeError:
                units = None
        timevar = None
        if time is None:
            try:
                timevar = data.time if data.time == data.dimensions[0] else data.dimensions[0]
            except AttributeError:
                if len(data.dimensions) > 2:
                    timevar = data.dimensions[0]
                    time = Time(ds[timevar])
                else:
                    time = None
        if depth is None:
            from gnome.environment.environment_objects import Depth
            depth = Depth(surface_index=-1)
#             if len(data.shape) == 4 or (len(data.shape) == 3 and time is None):
#                 from gnome.environment.environment_objects import S_Depth
#                 depth = S_Depth.from_netCDF(grid=grid,
#                                             depth=1,
#                                             data_file=data_file,
#                                             grid_file=grid_file,
#                                             **kwargs)
        if load_all:
            data = data[:]
        return cls(name=name,
                   units=units,
                   time=time,
                   data=data,
                   grid=grid,
                   depth=depth,
                   grid_file=grid_file,
                   data_file=data_file,
                   fill_value=fill_value,
                   **kwargs)
Example #18
0
    def from_netCDF(cls,
                    filename=None,
                    varname=None,
                    grid_topology=None,
                    name=None,
                    units=None,
                    time=None,
                    grid=None,
                    depth=None,
                    dataset=None,
                    data_file=None,
                    grid_file=None,
                    load_all=False,
                    fill_value=0,
                    **kwargs):
        '''
        Allows one-function creation of a GriddedProp from a file.

        :param filename: Default data source. Parameters below take precedence
        :param varname: Name of the variable in the data source file
        :param grid_topology: Description of the relationship between grid attributes and variable names.
        :param name: Name of property
        :param units: Units
        :param time: Time axis of the data
        :param data: Underlying data source
        :param grid: Grid that the data corresponds with
        :param depth: Depth axis object
        :param dataset: Instance of open Dataset
        :param data_file: Name of data source file
        :param grid_file: Name of grid source file
        :type filename: string
        :type varname: string
        :type grid_topology: {string : string, ...}
        :type name: string
        :type units: string
        :type time: [] of datetime.datetime, netCDF4 Variable, or Time object
        :type data: netCDF4.Variable or numpy.array
        :type grid: pysgrid or pyugrid
        :type depth: Depth, S_Depth or L_Depth
        :type dataset: netCDF4.Dataset
        :type data_file: string
        :type grid_file: string
        '''
        if filename is not None:
            data_file = filename
            grid_file = filename

        ds = None
        dg = None
        if dataset is None:
            if grid_file == data_file:
                ds = dg = _get_dataset(grid_file)
            else:
                ds = _get_dataset(data_file)
                dg = _get_dataset(grid_file)
        else:
            if grid_file is not None:
                dg = _get_dataset(grid_file)
            else:
                dg = dataset
            ds = dataset

        if grid is None:
            grid = PyGrid.from_netCDF(grid_file,
                                      dataset=dg,
                                      grid_topology=grid_topology)
        if varname is None:
            varname = cls._gen_varname(data_file, dataset=ds)
            if varname is None:
                raise NameError(
                    'Default current names are not in the data file, must supply variable name'
                )
        data = ds[varname]
        if name is None:
            name = cls.__name__ + str(cls._def_count)
            cls._def_count += 1
        if units is None:
            try:
                units = data.units
            except AttributeError:
                units = None
        if time is None:
            time = Time.from_netCDF(filename=data_file,
                                    dataset=ds,
                                    datavar=data)
        if depth is None:
            if (isinstance(grid, PyGrid_S) and len(data.shape) == 4
                    or isinstance(grid, PyGrid_U) and len(data.shape) == 3):
                from gnome.environment.environment_objects import Depth
                depth = Depth(surface_index=-1)
#             if len(data.shape) == 4 or (len(data.shape) == 3 and time is None):
#                 from gnome.environment.environment_objects import S_Depth
#                 depth = S_Depth.from_netCDF(grid=grid,
#                                             depth=1,
#                                             data_file=data_file,
#                                             grid_file=grid_file,
#                                             **kwargs)
        if load_all:
            data = data[:]
        return cls(name=name,
                   units=units,
                   time=time,
                   data=data,
                   grid=grid,
                   depth=depth,
                   grid_file=grid_file,
                   data_file=data_file,
                   fill_value=fill_value,
                   varname=varname,
                   **kwargs)
Example #19
0
    def from_netCDF(cls,
                    filename=None,
                    varnames=None,
                    grid_topology=None,
                    name=None,
                    units=None,
                    time=None,
                    grid=None,
                    depth=None,
                    data_file=None,
                    grid_file=None,
                    dataset=None,
                    load_all=False,
                    **kwargs):
        '''
        Allows one-function creation of a GridVectorProp from a file.

        :param filename: Default data source. Parameters below take precedence
        :param varnames: Names of the variables in the data source file
        :param grid_topology: Description of the relationship between grid attributes and variable names.
        :param name: Name of property
        :param units: Units
        :param time: Time axis of the data
        :param data: Underlying data source
        :param grid: Grid that the data corresponds with
        :param dataset: Instance of open Dataset
        :param data_file: Name of data source file
        :param grid_file: Name of grid source file
        :type filename: string
        :type varnames: [] of string
        :type grid_topology: {string : string, ...}
        :type name: string
        :type units: string
        :type time: [] of datetime.datetime, netCDF4 Variable, or Time object
        :type data: netCDF4.Variable or numpy.array
        :type grid: pysgrid or pyugrid
        :type dataset: netCDF4.Dataset
        :type data_file: string
        :type grid_file: string
        '''
        if filename is not None:
            data_file = filename
            grid_file = filename

        ds = None
        dg = None
        if dataset is None:
            if grid_file == data_file:
                ds = dg = _get_dataset(grid_file)
            else:
                ds = _get_dataset(data_file)
                dg = _get_dataset(grid_file)
        else:
            if grid_file is not None:
                dg = _get_dataset(grid_file)
            else:
                dg = dataset
            ds = dataset

        if grid is None:
            grid = PyGrid.from_netCDF(grid_file,
                                      dataset=dg,
                                      grid_topology=grid_topology)
        if varnames is None:
            varnames = cls._gen_varnames(data_file, dataset=ds)
        if name is None:
            name = cls.__name__ + str(cls._def_count)
            cls._def_count += 1
        data = ds[varnames[0]]
        if time is None:
            time = Time.from_netCDF(filename=data_file,
                                    dataset=ds,
                                    datavar=data)
        if depth is None:
            if (isinstance(grid, PyGrid_S) and len(data.shape) == 4
                    or (len(data.shape) == 3 and time is None)
                    or (isinstance(grid, PyGrid_U) and len(data.shape) == 3 or
                        (len(data.shape) == 2 and time is None))):
                from gnome.environment.environment_objects import Depth
                depth = Depth(surface_index=-1)
#             if len(data.shape) == 4 or (len(data.shape) == 3 and time is None):
#                 from gnome.environment.environment_objects import S_Depth
#                 depth = S_Depth.from_netCDF(grid=grid,
#                                             depth=1,
#                                             data_file=data_file,
#                                             grid_file=grid_file,
#                                             **kwargs)
        variables = OrderedCollection(dtype=EnvProp)
        for vn in varnames:
            if vn is not None:
                variables.append(
                    GriddedProp.from_netCDF(filename=filename,
                                            varname=vn,
                                            grid_topology=grid_topology,
                                            units=units,
                                            time=time,
                                            grid=grid,
                                            depth=depth,
                                            data_file=data_file,
                                            grid_file=grid_file,
                                            dataset=ds,
                                            load_all=load_all,
                                            **kwargs))
        if units is None:
            units = [v.units for v in variables]
            if all(u == units[0] for u in units):
                units = units[0]
        return cls(name=name,
                   filename=filename,
                   varnames=varnames,
                   grid_topology=grid_topology,
                   units=units,
                   time=time,
                   grid=grid,
                   depth=depth,
                   variables=variables,
                   data_file=data_file,
                   grid_file=grid_file,
                   dataset=ds,
                   load_all=load_all,
                   **kwargs)