def __init__(self, decim, taps, channel=0):
	gr.hier_block2.__init__(self, "pfb_decimator_ccf",
				gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature
				gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature

        self._decim = decim
        self._taps = taps
        self._channel = channel

        self.s2ss = gr.stream_to_streams(gr.sizeof_gr_complex, self._decim)
        self.pfb = gr.pfb_decimator_ccf(self._decim, self._taps, self._channel)

        self.connect(self, self.s2ss)

        for i in xrange(self._decim):
            self.connect((self.s2ss,i), (self.pfb,i))

        self.connect(self.pfb, self)
Example #2
0
    def __init__(self, decim, taps=None, channel=0, atten=100):
        gr.hier_block2.__init__(
            self,
            "pfb_decimator_ccf",
            gr.io_signature(1, 1, gr.sizeof_gr_complex),  # Input signature
            gr.io_signature(1, 1, gr.sizeof_gr_complex))  # Output signature

        self._decim = decim
        self._channel = channel

        if taps is not None:
            self._taps = taps
        else:
            # Create a filter that covers the full bandwidth of the input signal
            bw = 0.4
            tb = 0.2
            ripple = 0.1
            made = False
            while not made:
                try:
                    self._taps = optfir.low_pass(1, self._decim, bw, bw + tb,
                                                 ripple, atten)
                    made = True
                except RuntimeError:
                    ripple += 0.01
                    made = False
                    print(
                        "Warning: set ripple to %.4f dB. If this is a problem, adjust the attenuation or create your own filter taps."
                        % (ripple))

                    # Build in an exit strategy; if we've come this far, it ain't working.
                    if (ripple >= 1.0):
                        raise RuntimeError(
                            "optfir could not generate an appropriate filter.")

        self.s2ss = gr.stream_to_streams(gr.sizeof_gr_complex, self._decim)
        self.pfb = gr.pfb_decimator_ccf(self._decim, self._taps, self._channel)

        self.connect(self, self.s2ss)

        for i in xrange(self._decim):
            self.connect((self.s2ss, i), (self.pfb, i))

        self.connect(self.pfb, self)
Example #3
0
    def __init__(self, decim, taps=None, channel=0, atten=100):
	gr.hier_block2.__init__(self, "pfb_decimator_ccf",
				gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature
				gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature

        self._decim = decim
        self._channel = channel

        if taps is not None:
            self._taps = taps
        else:
            # Create a filter that covers the full bandwidth of the input signal
            bw = 0.4
            tb = 0.2
            ripple = 0.1
            made = False
            while not made:
                try:
                    self._taps = optfir.low_pass(1, self._decim, bw, bw+tb, ripple, atten)
                    made = True
                except RuntimeError:
                    ripple += 0.01
                    made = False
                    print("Warning: set ripple to %.4f dB. If this is a problem, adjust the attenuation or create your own filter taps." % (ripple))

                    # Build in an exit strategy; if we've come this far, it ain't working.
                    if(ripple >= 1.0):
                        raise RuntimeError("optfir could not generate an appropriate filter.")

        self.s2ss = gr.stream_to_streams(gr.sizeof_gr_complex, self._decim)
        self.pfb = gr.pfb_decimator_ccf(self._decim, self._taps, self._channel)

        self.connect(self, self.s2ss)

        for i in xrange(self._decim):
            self.connect((self.s2ss,i), (self.pfb,i))

        self.connect(self.pfb, self)