Example #1
0
        def pipeline():

            model_upload_op = ModelUploadOp(
                project=self._project,
                display_name=self._display_name,
                serving_container_image_uri=self._serving_container_image_uri,
                artifact_uri=self._artifact_uri
            )

            endpoint_create_op = EndpointCreateOp(
                project=self._project,
                display_name=self._display_name
            )

            model_deploy_op = ModelDeployOp(
                project=self._project,
                model=model_upload_op.outputs["model"]
            )

            batch_predict_op = ModelBatchPredictOp(
                project=self._project,
                model=model_upload_op.outputs["model"],
                job_display_name=self._display_name,
                gcs_source=self._gcs_source,
                gcs_destination_prefix=self._gcs_destination_prefix
            )
Example #2
0
        def pipeline():
            model_upload_op = ModelUploadOp(
                project=self._project,
                display_name=self._display_name,
                serving_container_image_uri=self._serving_container_image_uri,
                artifact_uri=self._artifact_uri)

            create_endpoint_op = EndpointCreateOp(
                project=self._project,
                location=self._location,
                display_name=self._display_name)

            model_deploy_op = ModelDeployOp(
                model=model_upload_op.outputs["model"],
                endpoint=create_endpoint_op.outputs["endpoint"],
                deployed_model_display_name="deployed_model_display_name",
                traffic_split={},
                dedicated_resources_machine_type="n1-standard-4",
                dedicated_resources_min_replica_count=1,
                dedicated_resources_max_replica_count=2,
                dedicated_resources_accelerator_type="fake-accelerator",
                dedicated_resources_accelerator_count=1,
                automatic_resources_min_replica_count=1,
                automatic_resources_max_replica_count=2,
                service_account="fake-sa",
                explanation_metadata={"xai_m": "bar"},
                explanation_parameters={"xai_p": "foo"},
            )

            _ = ModelUndeployOp(
                model=model_upload_op.outputs["model"],
                endpoint=create_endpoint_op.outputs["endpoint"],
            ).after(model_deploy_op)
Example #3
0
        def pipeline():
            model_upload_op = ModelUploadOp(
                project=self._project,
                location=self._location,
                display_name=self._display_name,
                description="some description",
                serving_container_image_uri=self._serving_container_image_uri,
                serving_container_command=["command1", "command2"],
                serving_container_args=["arg1", "arg2"],
                serving_container_environment_variables=["env1", "env2"],
                serving_container_ports=["123", "456"],
                serving_container_predict_route=
                "some serving_container_predict_route",
                serving_container_health_route=
                "some serving_container_health_route",
                instance_schema_uri="some instance_schema_uri",
                parameters_schema_uri="some parameters_schema_uri",
                prediction_schema_uri="some prediction_schema_uri",
                artifact_uri="some artifact_uri",
                explanation_metadata={"xai_m": "bar"},
                explanation_parameters={"xai_p": "foo"},
                encryption_spec_key_name="some encryption_spec_key_name",
                labels={"foo": "bar"})

            _ = ModelDeleteOp(model=model_upload_op.outputs["model"], )
Example #4
0
        def pipeline():

            model_upload_op = ModelUploadOp(
                project=self._project,
                display_name=self._display_name,
                serving_container_image_uri=self._serving_container_image_uri,
                artifact_uri=self._artifact_uri)

            batch_predict_op = ModelBatchPredictOp(
                project=self._project,
                location=self._location,
                job_display_name=self._display_name,
                model=model_upload_op.outputs["model"],
                instances_format="instance_format",
                gcs_source_uris=[self._gcs_source],
                bigquery_source_input_uri="bigquery_source_input_uri",
                model_parameters={"foo": "bar"},
                predictions_format="predictions_format",
                gcs_destination_output_uri_prefix=self._gcs_destination_prefix,
                bigquery_destination_output_uri=
                "bigquery_destination_output_uri",
                machine_type="machine_type",
                accelerator_type="accelerator_type",
                accelerator_count=1,
                starting_replica_count=2,
                max_replica_count=3,
                manual_batch_tuning_parameters_batch_size=4,
                generate_explanation=True,
                explanation_metadata={"xai_m": "bar"},
                explanation_parameters={"xai_p": "foo"},
                encryption_spec_key_name="some encryption_spec_key_name",
                labels={"foo": "bar"})
Example #5
0
        def pipeline():
            model_upload_op = ModelUploadOp(
                project=self._project,
                display_name=self._display_name,
                serving_container_image_uri=self._serving_container_image_uri,
                artifact_uri=self._artifact_uri)

            model_export_op = ModelExportOp(
                model=model_upload_op.outputs["model"],
                export_format_id="export_format",
                artifact_destination="artifact_destination",
                image_destination="image_destination")