import time import cv2 import google_ocr import dyanmo_ocr import dynamodb camera_port = 0 def image_capture(): camera = cv2.VideoCapture(camera_port) time.sleep(5) # After 5sec camera will open return_value, image = camera.read() cv2.imwrite("C:/Users/Rupali Singh/PycharmProjects/Drishti/opencv.png", image) del (camera) return image if __name__ == '__main__': image_capture() i = 1 while (i == 1): google_ocr.detect_text( path="C:/Users/Rupali Singh/PycharmProjects/Drishti/opencv.png") dynamodb.main("TextImage") i = i - 1
def find_devide_point(dirId, n): dirpath = "images{0:02d}".format(dirId) df = pd.DataFrame(index=[], columns=['id', 'time', 'text', 'state']) imId = 1 state = 0 # text: exist = 1, none = 0 y = np.zeros(150) pbar = tqdm(total=120) cnt = 0 hists = np.array([]) before_text = "" while (os.path.isfile(dirpath + "/image{}.jpg".format(imId))): pbar.update(1) path = dirpath + "/image{}.jpg".format(imId) img = cv2.imread(path) mask = extract_text.extract_white(img) rects = extract_text.get_rects(mask) height, width = img.shape[:2] rects = [ rect for rect in rects if rect[2] * rect[3] > height * width / n ] # textが存在しない場合 if not rects: if state: state = 0 y = np.zeros(150) series = pd.Series( [imId - 1, (imId - 1) * 0.5, before_text, -1], index=df.columns) df = df.append(series, ignore_index=True) imId += 1 continue x = whitehist(rects, mask, n) min_x = min(rects, key=(lambda x: x[0])) min_y = min(rects, key=(lambda x: x[1])) max_w = max(rects, key=(lambda x: x[0] + x[2])) max_h = max(rects, key=(lambda x: x[1] + x[3])) max_rect = np.array([ min_x[0], min_y[1], max_w[0] - min_x[0] + max_w[2], max_h[1] - min_y[1] + max_h[3] ]) # 画面がホワイトアウトした場合 if max_rect[2] * max_rect[3] >= height * width: if state: state = 0 y = x series = pd.Series( [imId - 1, (imId - 1) * 0.5, before_text, -1], index=df.columns) df = df.append(series, ignore_index=True) imId += 1 continue if isChange(x, y): cnt += 1 text = google_ocr.detect_text(dirId, imId) text = text.replace(" ", "").replace("\n", "").replace(u' ', "").replace("\t", "") if mojimoji.zen_to_han(text) == mojimoji.zen_to_han(before_text): imId += 1 y = x continue if state == 0: if text == "": imId += 1 y = x before_text = text continue state = 1 y = x series = pd.Series([imId, imId * 0.5, text, 1], index=df.columns) df = df.append(series, ignore_index=True) before_text = text else: state = 1 series = pd.Series( [imId - 1, (imId - 1) * 0.5, before_text, -1], index=df.columns) df = df.append(series, ignore_index=True) y = x before_text = text if text: series = pd.Series([imId, imId * 0.5, text, 1], index=df.columns) df = df.append(series, ignore_index=True) y = x imId += 1 datadir = "data" if not os.path.isdir(datadir): os.makedirs(datadir) df.to_csv(datadir + "/" + dirpath + ".csv") pbar.close() print(cnt)
#face_image = cv2.rectangle( face_image, (left,top), (right, bottom), (255,0,0)) # Put the blurred face region back into the frame image #frame[top:bottom, left:right] = face_image # Display the resulting image cv2.imshow('Face detect', frame) # Hit 'q' on the keyboard to quit! if cv2.waitKey(1) & 0xFF == ord('q'): break cv2.imwrite("face.jpg", frame) # Initialize some variables while True: # Grab a single frame of video ret, frame = video_capture.read() cv2.rectangle(frame, (100, 100), (600, 400), (0, 0, 255), 3) # Display the resulting image cv2.imshow('document', frame) # Hit 'q' on the keyboard to quit! if cv2.waitKey(1) & 0xFF == ord('q'): break cv2.imwrite("document.jpg", frame[100:400, 100:600]) google_ocr.detect_text("document.jpg") # Release handle to the webcam video_capture.release() cv2.destroyAllWindows()
import time import cv2 import google_ocr import dynamodb camera_port = 0 def image_capture(): camera = cv2.VideoCapture(camera_port) time.sleep(5) # After 5sec camera will open return_value, image = camera.read() cv2.imwrite("D:/Drishti-ocr/opencv.png", image) del (camera) return image if __name__ == '__main__': image_capture() i = 1 while (i == 1): google_ocr.detect_text(path="D:/Drishti-ocr/opencv.png") dynamodb.main("TextImage") i = i - 1
def captureimage(): video_capture = cv2.VideoCapture(0) # Initialize some variables face_locations = [] count = 30 while True and count > 0: count -= 1 # Grab a single frame of video ret, frame = video_capture.read() # Resize frame of video to 1/4 size for faster face detection processing small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) # Find all the faces and face encodings in the current frame of video face_locations = face_recognition.face_locations(small_frame, model="cnn") # Display the results for top, right, bottom, left in face_locations: # Scale back up face locations since the frame we detected in was scaled to 1/4 size top *= 4 right *= 4 bottom *= 4 left *= 4 # Extract the region of the image that contains the face frame = frame[top:bottom, left:right] # Blur the face image #face_image = cv2.GaussianBlur(face_image, (99, 99), 30) #face_image = cv2.rectangle( face_image, (left,top), (right, bottom), (255,0,0)) # Put the blurred face region back into the frame image #frame[top:bottom, left:right] = face_image font = cv2.FONT_HERSHEY_SIMPLEX bottomLeftCornerOfText = (0, 30) fontScale = 1 fontColor = (255, 255, 255) lineType = 2 # Display the resulting image cv2.putText(frame, str(count), bottomLeftCornerOfText, font, fontScale, fontColor, lineType) cv2.imshow('Video', frame) # Display the resulting image #cv2.imshow('Face detect', frame) # Hit 'q' on the keyboard to quit! if cv2.waitKey(1) & 0xFF == ord('q'): break face_frame = frame video_capture.release() cv2.destroyAllWindows() video_capture = cv2.VideoCapture(0) # Initialize some variables count = 100 while True and count > 0: count -= 1 # Grab a single frame of video ret, frame = video_capture.read() cv2.rectangle(frame, (100, 100), (600, 400), (0, 0, 255), 3) font = cv2.FONT_HERSHEY_SIMPLEX bottomLeftCornerOfText = (80, 80) fontScale = 1 fontColor = (255, 255, 255) lineType = 2 # Display the resulting image cv2.putText(frame, str(count), bottomLeftCornerOfText, font, fontScale, fontColor, lineType) # Display the resulting image cv2.imshow('document', frame) # Hit 'q' on the keyboard to quit! if cv2.waitKey(1) & 0xFF == ord('q'): break cv2.imwrite("document.jpg", frame[100:400, 100:600]) result = google_ocr.detect_text("document.jpg") # Release handle to the webcam video_capture.release() cv2.destroyAllWindows() T.insert(END, "Is this your name?: {}\n".format(result["PERSON"][0])) print(result["PERSON"][0]) print(face_frame) if result["PERSON"][0]: new_face_image = config.IMAGE_PATH + result["PERSON"][0] + ".jpg" cv2.imwrite(new_face_image, face_frame) image = face_recognition.load_image_file(new_face_image) face_encoding = face_recognition.face_encodings(image)[0] face_encoding.tofile(config.ENCODED_IMAGE + result["PERSON"][0] + ".enc") T.insert(END, "We have recorded you!\n")