Example #1
0
def onestep(nInput,
            xlb,
            xub,
            Xinit,
            Yinit,
            ngs=None,
            maxn=3000,
            kstop=10,
            pcento=0.1,
            peps=0.001):
    """ 
    Adaptive Surrogate Modelling-based Optimization
    One-step mode for offline optimization
    Do NOT call the model evaluation function
    nInput: number of model input
    xlb:    lower bound of input
    xub:    upper bound of input
    Xinit/Yinit: initial samplers for surrogate model construction
    ngs:    number of complexes (sub-populations)
    kstop:  maximum number of evolution loops before convergency
    pcento: the percentage change allowed in kstop loops before convergency
    peps:   minimum range of parameter
    maxn:   number of maximum model runs - surrogate model
    """
    x = Xinit.copy()
    y = Yinit.copy()

    sm = gp.GPR_Matern(x, y, nInput, 1, x.shape[0], xlb, xub)
    bestx_sm, bestf_sm, icall_sm, nloop_sm, \
    bestx_list_sm, bestf_list_sm, icall_list_sm = \
        SCEUA.optimization(sm, nInput, xlb, xub,
                           ngs, maxn, kstop, pcento, peps, verbose = False)
    x_resample = bestx_sm.copy()

    return x_resample
Example #2
0
def onestep(nInput, nOutput, xlb, xub, dft, pct, \
            Xinit, Yinit, pop = 100, gen = 100, \
            crossover_rate = 0.9, mu = 20, mum = 20, weight = 0.001):
    ''' Weighted Multi-Objective Adaptive Surrogate Modelling-based Optimization
        One-step mode for offline optimization
        Do NOT call the model evaluation function
        nInput: number of model input
        nOutput: number of output objectives
        xlb: lower bound of input
        xub: upper bound of input
        dft: default point to constrained the objective space, 
             objective value simulated by default parameters
             (dimension equals to nOutput, this is the reference point in MO-ASMO paper)
        pct: percentage of resampled points in each iteration
        Xinit and Yinit: initial samplers for surrogate model construction
        ### options for the embedded WNSGA-II of WMO-ASMO
            pop: number of population
            gen: number of generation
            crossover_rate: ratio of crossover in each generation
            mu: distribution index for crossover
            mum: distribution index for mutation
            weight: assign weight factor if one objective is worse than the dft point
    '''
    N_resample = int(pop*pct)
    Ninit = Xinit.shape[0]
    x = Xinit.copy()
    y = Yinit.copy()
    sm = gp.GPR_Matern(x, y, nInput, nOutput, x.shape[0], xlb, xub)
    bestx_sm, besty_sm, x_sm, y_sm = \
        WNSGA2.optimization(sm, nInput, nOutput, xlb, xub, dft, \
                            pop, gen, crossover_rate, mu, mum, weight)
    D = WNSGA2.weighted_crowding_distance(besty_sm, dft, weight)
    idxr = D.argsort()[::-1][:N_resample]
    x_resample = bestx_sm[idxr,:]
    return x_resample
Example #3
0
def onestep(nInput, nOutput, xlb, xub, pct, \
            Xinit, Yinit, pop = 100, gen = 100, \
            crossover_rate = 0.9, mu = 20, mum = 20):
    """ 
    Multi-Objective Adaptive Surrogate Modelling-based Optimization
    One-step mode for offline optimization
    Do NOT call the model evaluation function
    nInput: number of model input
    nOutput: number of output objectives
    xlb: lower bound of input
    xub: upper bound of input
    pct: percentage of resampled points in each iteration
    Xinit and Yinit: initial samplers for surrogate model construction
    ### options for the embedded NSGA-II of MO-ASMO
        pop: number of population
        gen: number of generation
        crossover_rate: ratio of crossover in each generation
        mu: distribution index for crossover
        mum: distribution index for mutation
    """
    N_resample = int(pop * pct)
    x = Xinit.copy()
    y = Yinit.copy()
    sm = gp.GPR_Matern(x, y, nInput, nOutput, x.shape[0], xlb, xub)
    bestx_sm, besty_sm, x_sm, y_sm = \
        NSGA2.optimization(sm, nInput, nOutput, xlb, xub, \
                           pop, gen, crossover_rate, mu, mum)
    D = NSGA2.crowding_distance(besty_sm)
    idxr = D.argsort()[::-1][:N_resample]
    x_resample = bestx_sm[idxr, :]
    return x_resample
Example #4
0
def optimization(model, nInput, nOutput, xlb, xub, niter, pct, \
                 Xinit = None, Yinit = None, pop = 100, gen = 100, \
                 crossover_rate = 0.9, mu = 20, mum = 20):
    """ 
    Multi-Objective Adaptive Surrogate Modelling-based Optimization
    model: the evaluated model function
    nInput: number of model input
    nOutput: number of output objectives
    xlb: lower bound of input
    xub: upper bound of input
    niter: number of iteration
    pct: percentage of resampled points in each iteration
    Xinit and Yinit: initial samplers for surrogate model construction
    ### options for the embedded NSGA-II of MO-ASMO
        pop: number of population
        gen: number of generation
        crossover_rate: ratio of crossover in each generation
        mu: distribution index for crossover
        mum: distribution index for mutation
    """
    N_resample = int(pop * pct)
    if (Xinit is None and Yinit is None):
        Ninit = nInput * 10
        Xinit = sampling.glp(Ninit, nInput)
        for i in range(Ninit):
            Xinit[i, :] = Xinit[i, :] * (xub - xlb) + xlb
        Yinit = np.zeros((Ninit, nOutput))
        for i in range(Ninit):
            Yinit[i, :] = model.evaluate(Xinit[i, :])
    else:
        Ninit = Xinit.shape[0]
    icall = Ninit
    x = Xinit.copy()
    y = Yinit.copy()

    for i in range(niter):
        print('Surrogate Opt loop: %d' % i)
        sm = gp.GPR_Matern(x, y, nInput, nOutput, x.shape[0], xlb, xub)
        bestx_sm, besty_sm, x_sm, y_sm = \
            NSGA2.optimization(sm, nInput, nOutput, xlb, xub, \
                               pop, gen, crossover_rate, mu, mum)
        D = NSGA2.crowding_distance(besty_sm)
        idxr = D.argsort()[::-1][:N_resample]
        x_resample = bestx_sm[idxr, :]
        y_resample = np.zeros((N_resample, nOutput))
        for j in range(N_resample):
            y_resample[j, :] = model.evaluate(x_resample[j, :])
        icall += N_resample
        x = np.vstack((x, x_resample))
        y = np.vstack((y, y_resample))

    xtmp = x.copy()
    ytmp = y.copy()
    xtmp, ytmp, rank, crowd = NSGA2.sortMO(xtmp, ytmp, nInput, nOutput)
    idxp = (rank == 0)
    bestx = xtmp[idxp, :]
    besty = ytmp[idxp, :]

    return bestx, besty, x, y
Example #5
0
def optimization(model,
                 nInput,
                 xlb,
                 xub,
                 niter,
                 Xinit=None,
                 Yinit=None,
                 ngs=None,
                 maxn=3000,
                 kstop=10,
                 pcento=0.1,
                 peps=0.001):
    """ 
    Adaptive Surrogate Modelling-based Optimization
    model:  the evaluated model function
    nInput: number of model input
    xlb:    lower bound of input
    xub:    upper bound of input
    niter:  number of total iteration
    Xinit/Yinit: initial samplers for surrogate model construction
    ngs:    number of complexes (sub-populations)
    kstop:  maximum number of evolution loops before convergency
    pcento: the percentage change allowed in kstop loops before convergency
    peps:   minimum range of parameter
    maxn:   number of maximum model runs - surrogate model
    """
    if (Xinit is None and Yinit is None):
        Ninit = nInput * 10
        Xinit = sampling.glp(Ninit, nInput)
        for i in range(Ninit):
            Xinit[i, :] = Xinit[i, :] * (xub - xlb) + xlb
        Yinit = np.zeros(Ninit)
        for i in range(Ninit):
            Yinit[i] = model.evaluate(Xinit[i, :])
    else:
        Ninit = Xinit.shape[0]
    icall = Ninit
    x = Xinit.copy()
    y = Yinit.copy()

    bestf = np.inf
    for i in range(niter):
        print('Surrogate Opt loop: %d' % i)
        sm = gp.GPR_Matern(x, y, nInput, 1, x.shape[0], xlb, xub)
        bestx_sm, bestf_sm, icall_sm, nloop_sm, \
        bestx_list_sm, bestf_list_sm, icall_list_sm = \
            SCEUA.optimization(sm, nInput, xlb, xub,
                               ngs, maxn, kstop, pcento, peps, verbose = False)
        bestx_tmp = bestx_sm.copy()
        bestf_tmp = model.evaluate(bestx_tmp)
        icall += 1
        x = np.vstack((x, bestx_tmp))
        y = np.append(y, bestf_tmp)
        if bestf_tmp < bestf:
            bestf = bestf_tmp
            bestx = bestx_tmp

    return bestx, bestf, x, y
Example #6
0
def optimization(model, nInput, nOutput, xlb, xub, dft, niter, pct, \
                 Xinit = None, Yinit = None, pop = 100, gen = 100, \
                 crossover_rate = 0.9, mu = 20, mum = 20, weight = 0.001):
    ''' Weighted Multi-Objective Adaptive Surrogate Modelling-based Optimization
        model: the evaluated model function
        nInput: number of model input
        nOutput: number of output objectives
        xlb: lower bound of input
        xub: upper bound of input
        dft: default point to constrained the objective space, 
             objective value simulated by default parameters
             (dimension equals to nOutput, this is the reference point in MO-ASMO paper)
        niter: number of iteration
        pct: percentage of resampled points in each iteration
        Xinit and Yinit: initial samplers for surrogate model construction
        ### options for the embedded WNSGA-II of WMO-ASMO
            pop: number of population
            gen: number of generation
            crossover_rate: ratio of crossover in each generation
            mu: distribution index for crossover
            mum: distribution index for mutation
            weight: assign weight factor if one objective is worse than the dft point
    '''
    N_resample = int(pop*pct)
    if (Xinit is None and Yinit is None):
        Ninit = nInput * 10
        Xinit = sampling.glp(Ninit, nInput)
        for i in range(Ninit):
            Xinit[i,:] = Xinit[i,:] * (xub - xlb) + xlb
        Yinit = np.zeros((Ninit, nOutput))
        for i in range(Ninit):
            Yinit[i,:] = model.evaluate(Xinit[i,:])
    else:
        Ninit = Xinit.shape[0]
    icall = Ninit
    x = Xinit.copy()
    y = Yinit.copy()

    for i in range(niter):
        print('Surrogate Opt loop: %d' % i)
        sm = gp.GPR_Matern(x, y, nInput, nOutput, x.shape[0], xlb, xub)
        bestx_sm, besty_sm, x_sm, y_sm = \
            WNSGA2.optimization(sm, nInput, nOutput, xlb, xub, dft, \
                                pop, gen, crossover_rate, mu, mum, weight)
        D = WNSGA2.weighted_crowding_distance(besty_sm, dft, weight)
        idxr = D.argsort()[::-1][:N_resample]
        x_resample = bestx_sm[idxr,:]
        y_resample = np.zeros((N_resample,nOutput))
        for j in range(N_resample):
            y_resample[j,:] = model.evaluate(x_resample[j,:])
        icall += N_resample
        x = np.vstack((x, x_resample))
        y = np.vstack((y, y_resample))

    xtmp = x.copy()
    ytmp = y.copy()
    xtmp, ytmp, rank, crowd = WNSGA2.sortMO_W(xtmp, ytmp, nInput, nOutput, dft, weight)
    bestx = []
    besty = []
    for i in range(ytmp.shape[0]):
        if rank[i] == 0 and sum(ytmp[i,:] < dft) == nOutput:
            bestx.append(xtmp[i,:])
            besty.append(ytmp[i,:])
    bestx = np.array(bestx)
    besty = np.array(besty)
    #idxp = (rank == 0)
    #bestx = xtmp[idxp,:]
    #besty = ytmp[idxp,:]

    return bestx, besty, x, y