def test_condition_and_fit(): reg = GPARRegressor(replace=False, impute=False, normalise_y=True, transform_y=squishing_transform) x = np.linspace(0, 5, 10) y = reg.sample(x, p=2) # Test that data is correctly normalised. reg.condition(x, y) approx(B.mean(reg.y, axis=0), B.zeros(reg.p)) approx(B.std(reg.y, axis=0), B.ones(reg.p)) # Test that data is correctly normalised if it has an output with zero # variance. y_pathological = y.copy() y_pathological[:, 0] = 1 reg.condition(x, y_pathological) assert (~B.isnan(reg.y)).numpy().all() # Test transformation and normalisation of outputs. z = torch.linspace(-1, 1, 10, dtype=torch.float64) z = B.stack(z, 2 * z, axis=1) allclose(reg._untransform_y(reg._transform_y(z)), z) allclose(reg._unnormalise_y(reg._normalise_y(z)), z) # Test that fitting runs without issues. vs = reg.vs.copy(detach=True) reg.fit(x, y, fix=False) reg.vs = vs reg.fit(x, y, fix=True) # TODO: Remove this once greedy search is implemented. with pytest.raises(NotImplementedError): reg.fit(x, y, greedy=True)
def test_sample_and_predict(x, w): # Use output transform to ensure that is handled correctly. reg = GPARRegressor( replace=False, impute=False, linear=True, linear_scale=1.0, nonlinear=False, noise=1e-8, normalise_y=False, transform_y=squishing_transform, ) # Test checks. with pytest.raises(ValueError): reg.sample(x, w) with pytest.raises(RuntimeError): reg.sample(x, w, posterior=True) # Test that output is simplified correctly. assert isinstance(reg.sample(x, w, p=2), np.ndarray) assert isinstance(reg.sample(x, w, p=2, num_samples=2), list) # Test that it produces random samples. Not sure how to test correctness. all_different(reg.sample(x, w, p=2), reg.sample(x, w, p=2)) all_different(reg.sample(x, w, p=2, latent=True), reg.sample(x, w, p=2, latent=True)) # Test that mean of posterior samples are around the data. y = reg.sample(x, w, p=2) reg.condition(x, y, w) approx(y, np.mean(reg.sample(x, w, posterior=True, num_samples=100), axis=0), atol=5e-2) approx( y, np.mean(reg.sample(x, w, latent=True, posterior=True, num_samples=100), axis=0), atol=5e-2, ) # Test that prediction is around the data. approx(y, reg.predict(x, w, num_samples=100), atol=5e-2) approx(y, reg.predict(x, w, latent=True, num_samples=100), atol=5e-2) # Test that prediction is confident. _, lowers, uppers = reg.predict(x, w, num_samples=100, credible_bounds=True) approx(uppers, lowers, atol=5e-2)
def test_logpdf(x, w): # Sample some data from a "sensitive" GPAR. reg = GPARRegressor( replace=False, impute=False, nonlinear=True, nonlinear_scale=0.1, linear=True, linear_scale=10.0, noise=1e-2, normalise_y=False, ) y = reg.sample(x, w, p=2, latent=True) # Extract models. gpar = _construct_gpar(reg, reg.vs, B.shape(B.uprank(x))[1], 2) f1, e1 = gpar.layers[0]() f2, e2 = gpar.layers[1]() # Test computation under prior. x1 = x x2 = B.concat(B.uprank(x), y[:, 0:1], axis=1) if w is not None: x1 = WeightedUnique(x1, w[:, 0]) x2 = WeightedUnique(x2, w[:, 1]) logpdf1 = (f1 + e1)(x1).logpdf(y[:, 0]) logpdf2 = (f2 + e2)(x2).logpdf(y[:, 1]) approx(reg.logpdf(x, y, w), logpdf1 + logpdf2, atol=1e-6) # Test computation under posterior. post1 = f1.measure | ((f1 + e1)(x1), y[:, 0]) post2 = f2.measure | ((f2 + e2)(x2), y[:, 1]) e1_post = GP(e1.mean, e1.kernel, measure=post1) e2_post = GP(e2.mean, e2.kernel, measure=post2) logpdf1 = (post1(f1) + e1_post)(x1).logpdf(y[:, 0]) logpdf2 = (post2(f2) + e2_post)(x2).logpdf(y[:, 1]) with pytest.raises(RuntimeError): reg.logpdf(x, y, w, posterior=True) reg.condition(x, y, w) approx(reg.logpdf(x, y, w, posterior=True), logpdf1 + logpdf2, atol=1e-6) # Test that sampling missing gives a stochastic estimate. y[::2, 0] = np.nan all_different( reg.logpdf(x, y, w, sample_missing=True), reg.logpdf(x, y, w, sample_missing=True), )
def test_logpdf(x, w): # Sample some data from a "sensitive" GPAR. reg = GPARRegressor( replace=False, impute=False, nonlinear=True, nonlinear_scale=0.1, linear=True, linear_scale=10.0, noise=1e-2, normalise_y=False, ) y = reg.sample(x, w, p=2, latent=True) # Extract models. gpar = _construct_gpar(reg, reg.vs, B.shape(B.uprank(x))[1], 2) f1, noise1 = gpar.layers[0]() f2, noise2 = gpar.layers[1]() if w is not None: noise1 = noise1 / w[:, 0] noise2 = noise2 / w[:, 1] # Test computation under prior. x1 = x x2 = B.concat(B.uprank(x), y[:, 0:1], axis=1) logpdf1 = f1(x1, noise1).logpdf(y[:, 0]) logpdf2 = f2(x2, noise2).logpdf(y[:, 1]) approx(reg.logpdf(x, y, w), logpdf1 + logpdf2, atol=1e-6) # Test computation under posterior. f1_post = f1 | (f1(x1, noise1), y[:, 0]) f2_post = f2 | (f2(x2, noise2), y[:, 1]) logpdf1 = f1_post(x1, noise1).logpdf(y[:, 0]) logpdf2 = f2_post(x2, noise2).logpdf(y[:, 1]) with pytest.raises(RuntimeError): reg.logpdf(x, y, w, posterior=True) reg.condition(x, y, w) approx(reg.logpdf(x, y, w, posterior=True), logpdf1 + logpdf2, atol=1e-6) # Test that sampling missing gives a stochastic estimate. y[::2, 0] = np.nan all_different( reg.logpdf(x, y, w, sample_missing=True), reg.logpdf(x, y, w, sample_missing=True), )
def test_sample_and_predict(): # Use output transform to ensure that is handled correctly. reg = GPARRegressor(replace=False, impute=False, linear=True, linear_scale=1., nonlinear=False, noise=1e-8, normalise_y=False, transform_y=squishing_transform) x = np.linspace(0, 5, 5) # Test checks. with pytest.raises(ValueError): reg.sample(x) with pytest.raises(RuntimeError): reg.sample(x, posterior=True) # Test that output is simplified correctly. assert isinstance(reg.sample(x, p=2), np.ndarray) assert isinstance(reg.sample(x, p=2, num_samples=2), list) # Test that it produces random samples. Not sure how to test correctness. assert np.sum(np.abs(reg.sample(x, p=2) - reg.sample(x, p=2))) >= 1e-2 assert np.sum(np.abs(reg.sample(x, p=2, latent=True) - reg.sample(x, p=2, latent=True))) >= 1e-3 # Test that mean of posterior samples are around the data. y = reg.sample(x, p=2) reg.condition(x, y) approx(y, np.mean(reg.sample(x, posterior=True, num_samples=100), axis=0), digits=3) approx(y, np.mean(reg.sample(x, latent=True, posterior=True, num_samples=100), axis=0), digits=3) # Test that prediction is around the data. approx(y, reg.predict(x, num_samples=100), digits=3) approx(y, reg.predict(x, latent=True, num_samples=100), digits=3) # Test that prediction is confident. _, lowers, uppers = reg.predict(x, num_samples=100, credible_bounds=True) assert np.less_equal(uppers - lowers, 1e-2).all()
def test_logpdf(): # Sample some data from a "sensitive" GPAR. reg = GPARRegressor(replace=False, impute=False, nonlinear=True, nonlinear_scale=0.1, linear=True, linear_scale=10., noise=1e-4, normalise_y=False) x = np.linspace(0, 5, 10) y = reg.sample(x, p=2, latent=True) # Extract models. gpar = _construct_gpar(reg, reg.vs, 1, 2) f1, e1 = gpar.layers[0]() f2, e2 = gpar.layers[1]() # Test computation under prior. logpdf1 = (f1 + e1)(tensor(x)).logpdf(tensor(y[:, 0])) x_stack = np.concatenate([x[:, None], y[:, 0:1]], axis=1) logpdf2 = (f2 + e2)(tensor(x_stack)).logpdf(tensor(y[:, 1])) approx(reg.logpdf(x, y), logpdf1 + logpdf2, digits=6) # Test computation under posterior. e1_post = GP(e1.kernel, e1.mean, graph=e1.graph) e2_post = GP(e2.kernel, e2.mean, graph=e2.graph) f1_post = f1 | ((f1 + e1)(tensor(x)), tensor(y[:, 0])) f2_post = f2 | ((f2 + e2)(tensor(x_stack)), tensor(y[:, 1])) logpdf1 = (f1_post + e1_post)(tensor(x)).logpdf(tensor(y[:, 0])) logpdf2 = (f2_post + e2_post)(tensor(x_stack)).logpdf(tensor(y[:, 1])) with pytest.raises(RuntimeError): reg.logpdf(x, y, posterior=True) reg.condition(x, y) approx(reg.logpdf(x, y, posterior=True), logpdf1 + logpdf2, digits=6) # Test that sampling missing gives a stochastic estimate. y[::2, 0] = np.nan assert np.abs(reg.logpdf(x, y, sample_missing=True) - reg.logpdf(x, y, sample_missing=True)) >= 1e-3