def __init__(self, ksl, gd, nvalence, setups, bd, dtype, world, kd, kptband_comm, timer, atomic_hamiltonian=None): WaveFunctions.__init__(self, gd, nvalence, setups, bd, dtype, world, kd, kptband_comm, timer) self.ksl = ksl self.S_qMM = None self.T_qMM = None self.P_aqMi = None if atomic_hamiltonian is None: if ksl.using_blacs: atomic_hamiltonian = 'distributed' else: atomic_hamiltonian = 'dense' if isinstance(atomic_hamiltonian, str): atomic_hamiltonian = get_atomic_hamiltonian(atomic_hamiltonian) self.atomic_hamiltonian = atomic_hamiltonian self.timer.start('TCI: Evaluate splines') self.tci = NewTCI(gd.cell_cv, gd.pbc_c, setups, kd.ibzk_qc, kd.gamma) self.timer.stop('TCI: Evaluate splines') self.basis_functions = BasisFunctions( gd, [setup.phit_j for setup in setups], kd, dtype=dtype, cut=True)
def __init__(self, ksl, gd, nvalence, setups, bd, dtype, world, kd, timer=None): WaveFunctions.__init__(self, gd, nvalence, setups, bd, dtype, world, kd, timer) self.ksl = ksl self.S_qMM = None self.T_qMM = None self.P_aqMi = None self.timer.start('TCI: Evaluate splines') self.tci = NewTCI(gd.cell_cv, gd.pbc_c, setups, kd.ibzk_qc, kd.gamma) self.timer.stop('TCI: Evaluate splines') self.basis_functions = BasisFunctions(gd, [setup.phit_j for setup in setups], kd, cut=True)
def __init__(self, ksl, gd, nvalence, setups, bd, dtype, world, kd, timer=None): WaveFunctions.__init__(self, gd, nvalence, setups, bd, dtype, world, kd, timer) self.ksl = ksl self.S_qMM = None self.T_qMM = None self.P_aqMi = None self.timer.start('TCI: Evaluate splines') self.tci = NewTCI(gd.cell_cv, gd.pbc_c, setups, kd.ibzk_qc, kd.gamma) self.timer.stop('TCI: Evaluate splines') self.basis_functions = BasisFunctions(gd, [setup.phit_j for setup in setups], kd.comm, cut=True) if not kd.gamma: self.basis_functions.set_k_points(kd.ibzk_qc)
def get_lcao_projections_HSP(calc, bfs=None, spin=0, projectionsonly=True): """Some title. if projectionsonly is True, return the projections:: V_qnM = <psi_qn | Phi_qM> else, also return the Hamiltonian, overlap, and projector overlaps:: H_qMM = <Phi_qM| H |Phi_qM'> S_qMM = <Phi_qM|Phi_qM'> P_aqMi = <pt^a_qi|Phi_qM> """ if calc.wfs.kpt_comm.size != 1: raise NotImplementedError('Parallelization over spin/kpt not ' 'implemented yet.') spos_ac = calc.atoms.get_scaled_positions() % 1. comm = calc.wfs.gd.comm nq = len(calc.wfs.ibzk_qc) Nk = calc.wfs.nibzkpts nao = calc.wfs.setups.nao dtype = calc.wfs.dtype if bfs is None: bfs = get_bfs(calc) tci = TwoCenterIntegrals(calc.wfs.gd.cell_cv, calc.wfs.gd.pbc_c, calc.wfs.setups, calc.wfs.ibzk_qc, calc.wfs.gamma) # Calculate projector overlaps, and (lower triangle of-) S and T matrices S_qMM = np.zeros((nq, nao, nao), dtype) T_qMM = np.zeros((nq, nao, nao), dtype) P_aqMi = {} for a in bfs.my_atom_indices: ni = calc.wfs.setups[a].ni P_aqMi[a] = np.zeros((nq, nao, ni), dtype) tci.calculate(spos_ac, S_qMM, T_qMM, P_aqMi) add_paw_correction_to_overlap(calc.wfs.setups, P_aqMi, S_qMM) calc.wfs.gd.comm.sum(S_qMM) calc.wfs.gd.comm.sum(T_qMM) # Calculate projections V_qnM = np.zeros((nq, calc.wfs.bd.nbands, nao), dtype) for kpt in calc.wfs.kpt_u: if kpt.s != spin: continue V_nM = V_qnM[kpt.q] #bfs.integrate2(kpt.psit_nG[:], V_nM, kpt.q) # all bands to save time for n, V_M in enumerate(V_nM): # band-by-band to save memory bfs.integrate2(kpt.psit_nG[n][:], V_M, kpt.q) for a, P_ni in kpt.P_ani.items(): dS_ii = calc.wfs.setups[a].dO_ii P_Mi = P_aqMi[a][kpt.q] V_nM += np.dot(P_ni, np.inner(dS_ii, P_Mi).conj()) comm.sum(V_qnM) if projectionsonly: return V_qnM # Determine potential matrix vt_G = calc.hamiltonian.vt_sG[spin] H_qMM = np.zeros((nq, nao, nao), dtype) for q, H_MM in enumerate(H_qMM): bfs.calculate_potential_matrix(vt_G, H_MM, q) # Make Hamiltonian as sum of kinetic (T) and potential (V) matrices # and add atomic corrections for a, P_qMi in P_aqMi.items(): dH_ii = unpack(calc.hamiltonian.dH_asp[a][spin]) for P_Mi, H_MM in zip(P_qMi, H_qMM): H_MM += np.dot(P_Mi, np.inner(dH_ii, P_Mi).conj()) comm.sum(H_qMM) H_qMM += T_qMM # Fill in the upper triangles of H and S for H_MM, S_MM in zip(H_qMM, S_qMM): tri2full(H_MM) tri2full(S_MM) H_qMM *= Hartree return V_qnM, H_qMM, S_qMM, P_aqMi
def get_lcao_projections_HSP(calc, bfs=None, spin=0, projectionsonly=True): """Some title. if projectionsonly is True, return the projections:: V_qnM = <psi_qn | Phi_qM> else, also return the Hamiltonian, overlap, and projector overlaps:: H_qMM = <Phi_qM| H |Phi_qM'> S_qMM = <Phi_qM|Phi_qM'> P_aqMi = <pt^a_qi|Phi_qM> """ if calc.wfs.kd.comm.size != 1: raise NotImplementedError('Parallelization over spin/kpt not ' 'implemented yet.') spos_ac = calc.atoms.get_scaled_positions() % 1. comm = calc.wfs.gd.comm nq = len(calc.wfs.kd.ibzk_qc) Nk = calc.wfs.kd.nibzkpts nao = calc.wfs.setups.nao dtype = calc.wfs.dtype if bfs is None: bfs = get_bfs(calc) tci = TwoCenterIntegrals(calc.wfs.gd.cell_cv, calc.wfs.gd.pbc_c, calc.wfs.setups, calc.wfs.kd.ibzk_qc, calc.wfs.kd.gamma) # Calculate projector overlaps, and (lower triangle of-) S and T matrices S_qMM = np.zeros((nq, nao, nao), dtype) T_qMM = np.zeros((nq, nao, nao), dtype) P_aqMi = {} for a in bfs.my_atom_indices: ni = calc.wfs.setups[a].ni P_aqMi[a] = np.zeros((nq, nao, ni), dtype) tci.calculate(spos_ac, S_qMM, T_qMM, P_aqMi) add_paw_correction_to_overlap(calc.wfs.setups, P_aqMi, S_qMM) calc.wfs.gd.comm.sum(S_qMM) calc.wfs.gd.comm.sum(T_qMM) # Calculate projections V_qnM = np.zeros((nq, calc.wfs.bd.nbands, nao), dtype) for kpt in calc.wfs.kpt_u: if kpt.s != spin: continue V_nM = V_qnM[kpt.q] #bfs.integrate2(kpt.psit_nG[:], V_nM, kpt.q) # all bands to save time for n, V_M in enumerate(V_nM): # band-by-band to save memory bfs.integrate2(kpt.psit_nG[n][:], V_M, kpt.q) for a, P_ni in kpt.P_ani.items(): dS_ii = calc.wfs.setups[a].dO_ii P_Mi = P_aqMi[a][kpt.q] V_nM += np.dot(P_ni, np.inner(dS_ii, P_Mi).conj()) comm.sum(V_qnM) if projectionsonly: return V_qnM # Determine potential matrix vt_G = calc.hamiltonian.vt_sG[spin] H_qMM = np.zeros((nq, nao, nao), dtype) for q, H_MM in enumerate(H_qMM): bfs.calculate_potential_matrix(vt_G, H_MM, q) # Make Hamiltonian as sum of kinetic (T) and potential (V) matrices # and add atomic corrections for a, P_qMi in P_aqMi.items(): dH_ii = unpack(calc.hamiltonian.dH_asp[a][spin]) for P_Mi, H_MM in zip(P_qMi, H_qMM): H_MM += np.dot(P_Mi, np.inner(dH_ii, P_Mi).conj()) comm.sum(H_qMM) H_qMM += T_qMM # Fill in the upper triangles of H and S for H_MM, S_MM in zip(H_qMM, S_qMM): tri2full(H_MM) tri2full(S_MM) H_qMM *= Hartree return V_qnM, H_qMM, S_qMM, P_aqMi
class LCAOWaveFunctions(WaveFunctions): def __init__(self, ksl, gd, nvalence, setups, bd, dtype, world, kd, timer=None): WaveFunctions.__init__(self, gd, nvalence, setups, bd, dtype, world, kd, timer) self.ksl = ksl self.S_qMM = None self.T_qMM = None self.P_aqMi = None self.timer.start('TCI: Evaluate splines') self.tci = NewTCI(gd.cell_cv, gd.pbc_c, setups, kd.ibzk_qc, kd.gamma) self.timer.stop('TCI: Evaluate splines') self.basis_functions = BasisFunctions(gd, [setup.phit_j for setup in setups], kd, cut=True) def empty(self, n=(), global_array=False, realspace=False): if realspace: return self.gd.empty(n, self.dtype, global_array) else: if isinstance(n, int): n = (n,) nao = self.setups.nao return np.empty(n + (nao,), self.dtype) def summary(self, fd): fd.write('Wave functions: LCAO\n') def set_eigensolver(self, eigensolver): WaveFunctions.set_eigensolver(self, eigensolver) eigensolver.initialize(self.gd, self.dtype, self.setups.nao, self.ksl) def set_positions(self, spos_ac): self.timer.start('Basic WFS set positions') WaveFunctions.set_positions(self, spos_ac) self.timer.stop('Basic WFS set positions') self.timer.start('Basis functions set positions') self.basis_functions.set_positions(spos_ac) self.timer.stop('Basis functions set positions') if self.ksl is not None: self.basis_functions.set_matrix_distribution(self.ksl.Mstart, self.ksl.Mstop) nq = len(self.kd.ibzk_qc) nao = self.setups.nao mynbands = self.bd.mynbands Mstop = self.ksl.Mstop Mstart = self.ksl.Mstart mynao = Mstop - Mstart if self.ksl.using_blacs: # XXX # S and T have been distributed to a layout with blacs, so # discard them to force reallocation from scratch. # # TODO: evaluate S and T when they *are* distributed, thus saving # memory and avoiding this problem self.S_qMM = None self.T_qMM = None S_qMM = self.S_qMM T_qMM = self.T_qMM if S_qMM is None: # XXX # First time: assert T_qMM is None if self.ksl.using_blacs: # XXX self.tci.set_matrix_distribution(Mstart, mynao) S_qMM = np.empty((nq, mynao, nao), self.dtype) T_qMM = np.empty((nq, mynao, nao), self.dtype) for kpt in self.kpt_u: if kpt.C_nM is None: kpt.C_nM = np.empty((mynbands, nao), self.dtype) self.allocate_arrays_for_projections( self.basis_functions.my_atom_indices) self.P_aqMi = {} for a in self.basis_functions.my_atom_indices: ni = self.setups[a].ni self.P_aqMi[a] = np.empty((nq, nao, ni), self.dtype) for kpt in self.kpt_u: q = kpt.q kpt.P_aMi = dict([(a, P_qMi[q]) for a, P_qMi in self.P_aqMi.items()]) self.timer.start('TCI: Calculate S, T, P') # Calculate lower triangle of S and T matrices: self.tci.calculate(spos_ac, S_qMM, T_qMM, self.P_aqMi) add_paw_correction_to_overlap(self.setups, self.P_aqMi, S_qMM, self.ksl.Mstart, self.ksl.Mstop) self.timer.stop('TCI: Calculate S, T, P') S_MM = None # allow garbage collection of old S_qMM after redist S_qMM = self.ksl.distribute_overlap_matrix(S_qMM) T_qMM = self.ksl.distribute_overlap_matrix(T_qMM) for kpt in self.kpt_u: q = kpt.q kpt.S_MM = S_qMM[q] kpt.T_MM = T_qMM[q] if (debug and self.band_comm.size == 1 and self.gd.comm.rank == 0 and nao > 0 and not self.ksl.using_blacs): # S and T are summed only on comm master, so check only there from numpy.linalg import eigvalsh self.timer.start('Check positive definiteness') for S_MM in S_qMM: tri2full(S_MM, UL='L') smin = eigvalsh(S_MM).real.min() if smin < 0: raise RuntimeError('Overlap matrix has negative ' 'eigenvalue: %e' % smin) self.timer.stop('Check positive definiteness') self.positions_set = True self.S_qMM = S_qMM self.T_qMM = T_qMM def initialize(self, density, hamiltonian, spos_ac): if density.nt_sG is None: if self.kpt_u[0].f_n is None or self.kpt_u[0].C_nM is None: density.initialize_from_atomic_densities(self.basis_functions) # Initialize GLLB-potential from basis function orbitals if hamiltonian.xc.type == 'GLLB': hamiltonian.xc.initialize_from_atomic_orbitals(self.basis_functions) else: # We have the info we need for a density matrix, so initialize # from that instead of from scratch. This will be the case # after set_positions() during a relaxation density.initialize_from_wavefunctions(self) else: # After a restart, nt_sg doesn't exist yet, so we'll have to # make sure it does. Of course, this should have been taken care # of already by this time, so we should improve the code elsewhere density.calculate_normalized_charges_and_mix() hamiltonian.update(density) def initialize_wave_functions_from_lcao(self): """ Fill the calc.wfs.kpt_[u].psit_nG arrays with usefull data. Normally psit_nG is NOT used in lcao mode, but some extensions (like ase.dft.wannier) want to have it. This code is adapted from fd.py / initialize_from_lcao_coefficients() and fills psit_nG with data constructed from the current lcao coefficients (kpt.C_nM). (This may or may not work in band-parallel case!) """ #print('initialize_wave_functions_from_lcao') bfs = self.basis_functions for kpt in self.kpt_u: #print("kpt: {0}".format(kpt)) kpt.psit_nG = self.gd.zeros(self.bd.nbands, self.dtype) bfs.lcao_to_grid(kpt.C_nM, kpt.psit_nG[:self.bd.mynbands], kpt.q) # kpt.C_nM = None # def initialize_wave_functions_from_restart_file(self): """Dummy function to ensure compatibility to fd mode""" self.initialize_wave_functions_from_lcao() # def calculate_density_matrix(self, f_n, C_nM, rho_MM=None): # ATLAS can't handle uninitialized output array: #rho_MM.fill(42) self.timer.start('Calculate density matrix') rho_MM = self.ksl.calculate_density_matrix(f_n, C_nM, rho_MM) self.timer.stop('Calculate density matrix') return rho_MM # ---------------------------- if 1: # XXX Should not conjugate, but call gemm(..., 'c') # Although that requires knowing C_Mn and not C_nM. # that also conforms better to the usual conventions in literature Cf_Mn = C_nM.T.conj() * f_n self.timer.start('gemm') gemm(1.0, C_nM, Cf_Mn, 0.0, rho_MM, 'n') self.timer.stop('gemm') self.timer.start('band comm sum') self.bd.comm.sum(rho_MM) self.timer.stop('band comm sum') else: # Alternative suggestion. Might be faster. Someone should test this from gpaw.utilities.blas import r2k C_Mn = C_nM.T.copy() r2k(0.5, C_Mn, f_n * C_Mn, 0.0, rho_MM) tri2full(rho_MM) def calculate_density_matrix_delta(self, d_nn, C_nM, rho_MM=None): # ATLAS can't handle uninitialized output array: #rho_MM.fill(42) self.timer.start('Calculate density matrix') rho_MM = self.ksl.calculate_density_matrix_delta(d_nn, C_nM, rho_MM) self.timer.stop('Calculate density matrix') return rho_MM def add_to_density_from_k_point_with_occupation(self, nt_sG, kpt, f_n): """Add contribution to pseudo electron-density. Do not use the standard occupation numbers, but ones given with argument f_n.""" # Custom occupations are used in calculation of response potential # with GLLB-potential if kpt.rho_MM is None: rho_MM = self.calculate_density_matrix(f_n, kpt.C_nM) if hasattr(kpt, 'c_on'): assert self.bd.comm.size == 1 d_nn = np.zeros((self.bd.mynbands, self.bd.mynbands), dtype=kpt.C_nM.dtype) for ne, c_n in zip(kpt.ne_o, kpt.c_on): assert abs(c_n.imag).max() < 1e-14 d_nn += ne * np.outer(c_n.conj(), c_n).real rho_MM += self.calculate_density_matrix_delta(d_nn, kpt.C_nM) else: rho_MM = kpt.rho_MM self.timer.start('Construct density') self.basis_functions.construct_density(rho_MM, nt_sG[kpt.s], kpt.q) self.timer.stop('Construct density') def add_to_kinetic_density_from_k_point(self, taut_G, kpt): raise NotImplementedError('Kinetic density calculation for LCAO ' 'wavefunctions is not implemented.') def calculate_forces(self, hamiltonian, F_av): self.timer.start('LCAO forces') spos_ac = self.tci.atoms.get_scaled_positions() % 1.0 ksl = self.ksl nao = ksl.nao mynao = ksl.mynao nq = len(self.kd.ibzk_qc) dtype = self.dtype tci = self.tci gd = self.gd bfs = self.basis_functions Mstart = ksl.Mstart Mstop = ksl.Mstop from gpaw.kohnsham_layouts import BlacsOrbitalLayouts isblacs = isinstance(ksl, BlacsOrbitalLayouts) # XXX if not isblacs: self.timer.start('TCI derivative') dThetadR_qvMM = np.empty((nq, 3, mynao, nao), dtype) dTdR_qvMM = np.empty((nq, 3, mynao, nao), dtype) dPdR_aqvMi = {} for a in self.basis_functions.my_atom_indices: ni = self.setups[a].ni dPdR_aqvMi[a] = np.empty((nq, 3, nao, ni), dtype) tci.calculate_derivative(spos_ac, dThetadR_qvMM, dTdR_qvMM, dPdR_aqvMi) gd.comm.sum(dThetadR_qvMM) gd.comm.sum(dTdR_qvMM) self.timer.stop('TCI derivative') my_atom_indices = bfs.my_atom_indices atom_indices = bfs.atom_indices def _slices(indices): for a in indices: M1 = bfs.M_a[a] - Mstart M2 = M1 + self.setups[a].nao if M2 > 0: yield a, max(0, M1), M2 def slices(): return _slices(atom_indices) def my_slices(): return _slices(my_atom_indices) # # ----- ----- # \ -1 \ * # E = ) S H rho = ) c eps f c # mu nu / mu x x z z nu / n mu n n n nu # ----- ----- # x z n # # We use the transpose of that matrix. The first form is used # if rho is given, otherwise the coefficients are used. self.timer.start('Initial') rhoT_uMM = [] ET_uMM = [] if not isblacs: if self.kpt_u[0].rho_MM is None: self.timer.start('Get density matrix') for kpt in self.kpt_u: rhoT_MM = ksl.get_transposed_density_matrix(kpt.f_n, kpt.C_nM) rhoT_uMM.append(rhoT_MM) ET_MM = ksl.get_transposed_density_matrix(kpt.f_n * kpt.eps_n, kpt.C_nM) ET_uMM.append(ET_MM) if hasattr(kpt, 'c_on'): # XXX does this work with BLACS/non-BLACS/etc.? assert self.bd.comm.size == 1 d_nn = np.zeros((self.bd.mynbands, self.bd.mynbands), dtype=kpt.C_nM.dtype) for ne, c_n in zip(kpt.ne_o, kpt.c_on): d_nn += ne * np.outer(c_n.conj(), c_n) rhoT_MM += ksl.get_transposed_density_matrix_delta(d_nn, kpt.C_nM) ET_MM += ksl.get_transposed_density_matrix_delta(d_nn * kpt.eps_n, kpt.C_nM) self.timer.stop('Get density matrix') else: rhoT_uMM = [] ET_uMM = [] for kpt in self.kpt_u: H_MM = self.eigensolver.calculate_hamiltonian_matrix(hamiltonian, self, kpt) tri2full(H_MM) S_MM = kpt.S_MM.copy() tri2full(S_MM) ET_MM = np.linalg.solve(S_MM, gemmdot(H_MM, kpt.rho_MM)).T.copy() del S_MM, H_MM rhoT_MM = kpt.rho_MM.T.copy() rhoT_uMM.append(rhoT_MM) ET_uMM.append(ET_MM) self.timer.stop('Initial') if isblacs: # XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX from gpaw.blacs import BlacsGrid, Redistributor def get_density_matrix(f_n, C_nM, redistributor): rho1_mm = ksl.calculate_blocked_density_matrix(f_n, C_nM).conj() rho_mm = redistributor.redistribute(rho1_mm) return rho_mm pcutoff_a = [max([pt.get_cutoff() for pt in setup.pt_j]) for setup in self.setups] phicutoff_a = [max([phit.get_cutoff() for phit in setup.phit_j]) for setup in self.setups] # XXX should probably use bdsize x gdsize instead # That would be consistent with some existing grids grid = BlacsGrid(ksl.block_comm, self.gd.comm.size, self.bd.comm.size) blocksize1 = -(-nao // grid.nprow) blocksize2 = -(-nao // grid.npcol) # XXX what are rows and columns actually? desc = grid.new_descriptor(nao, nao, blocksize1, blocksize2) rhoT_umm = [] ET_umm = [] redistributor = Redistributor(grid.comm, ksl.mmdescriptor, desc) Fpot_av = np.zeros_like(F_av) for u, kpt in enumerate(self.kpt_u): self.timer.start('Get density matrix') rhoT_mm = get_density_matrix(kpt.f_n, kpt.C_nM, redistributor) rhoT_umm.append(rhoT_mm) self.timer.stop('Get density matrix') self.timer.start('Potential') rhoT_mM = ksl.distribute_to_columns(rhoT_mm, desc) vt_G = hamiltonian.vt_sG[kpt.s] Fpot_av += bfs.calculate_force_contribution(vt_G, rhoT_mM, kpt.q) del rhoT_mM self.timer.stop('Potential') self.timer.start('Get density matrix') for kpt in self.kpt_u: ET_mm = get_density_matrix(kpt.f_n * kpt.eps_n, kpt.C_nM, redistributor) ET_umm.append(ET_mm) self.timer.stop('Get density matrix') M1start = blocksize1 * grid.myrow M2start = blocksize2 * grid.mycol M1stop = min(M1start + blocksize1, nao) M2stop = min(M2start + blocksize2, nao) m1max = M1stop - M1start m2max = M2stop - M2start if not isblacs: # Kinetic energy contribution # # ----- d T # a \ mu nu # F += 2 Re ) -------- rho # / d R nu mu # ----- mu nu # mu in a; nu # Fkin_av = np.zeros_like(F_av) for u, kpt in enumerate(self.kpt_u): dEdTrhoT_vMM = (dTdR_qvMM[kpt.q] * rhoT_uMM[u][np.newaxis]).real for a, M1, M2 in my_slices(): Fkin_av[a, :] += 2.0 * dEdTrhoT_vMM[:, M1:M2].sum(-1).sum(-1) del dEdTrhoT_vMM # Density matrix contribution due to basis overlap # # ----- d Theta # a \ mu nu # F += -2 Re ) ------------ E # / d R nu mu # ----- mu nu # mu in a; nu # Ftheta_av = np.zeros_like(F_av) for u, kpt in enumerate(self.kpt_u): dThetadRE_vMM = (dThetadR_qvMM[kpt.q] * ET_uMM[u][np.newaxis]).real for a, M1, M2 in my_slices(): Ftheta_av[a, :] += -2.0 * dThetadRE_vMM[:, M1:M2].sum(-1).sum(-1) del dThetadRE_vMM if isblacs: from gpaw.lcao.overlap import TwoCenterIntegralCalculator self.timer.start('Prepare TCI loop') M_a = bfs.M_a Fkin2_av = np.zeros_like(F_av) Ftheta2_av = np.zeros_like(F_av) cell_cv = tci.atoms.cell spos_ac = tci.atoms.get_scaled_positions() % 1.0 overlapcalc = TwoCenterIntegralCalculator(self.kd.ibzk_qc, derivative=False) def get_phases(offset): return overlapcalc.phaseclass(overlapcalc.ibzk_qc, offset) # XXX this is not parallel *AT ALL*. self.timer.start('Get neighbors') nl = tci.atompairs.pairs.neighbors r_and_offset_aao = get_r_and_offsets(nl, spos_ac, cell_cv) atompairs = r_and_offset_aao.keys() atompairs.sort() self.timer.stop('Get neighbors') T_expansions = tci.T_expansions Theta_expansions = tci.Theta_expansions P_expansions = tci.P_expansions nq = len(self.ibzk_qc) dH_asp = hamiltonian.dH_asp self.timer.start('broadcast dH') alldH_asp = {} for a in range(len(self.setups)): gdrank = bfs.sphere_a[a].rank if gdrank == gd.rank: dH_sp = dH_asp[a] else: ni = self.setups[a].ni dH_sp = np.empty((self.nspins, ni * (ni + 1) // 2)) gd.comm.broadcast(dH_sp, gdrank) # okay, now everyone gets copies of dH_sp alldH_asp[a] = dH_sp self.timer.stop('broadcast dH') # This will get sort of hairy. We need to account for some # three-center overlaps, such as: # # a1 # Phi ~a3 a3 ~a3 a2 a2,a1 # < ---- |p > dH <p |Phi > rho # dR # # To this end we will loop over all pairs of atoms (a1, a3), # and then a sub-loop over (a3, a2). from gpaw.lcao.overlap import DerivativeAtomicDisplacement class Displacement(DerivativeAtomicDisplacement): def __init__(self, a1, a2, R_c, offset): phases = overlapcalc.phaseclass(overlapcalc.ibzk_qc, offset) DerivativeAtomicDisplacement.__init__(self, None, a1, a2, R_c, offset, phases) # Cache of Displacement objects with spherical harmonics with # evaluated spherical harmonics. disp_aao = {} def get_displacements(a1, a2, maxdistance): # XXX the way maxdistance is handled it can lead to # bad caching when different maxdistances are passed # to subsequent calls with same pair of atoms disp_o = disp_aao.get((a1, a2)) if disp_o is None: disp_o = [] for r, offset in r_and_offset_aao[(a1, a2)]: if np.linalg.norm(r) > maxdistance: continue disp = Displacement(a1, a2, r, offset) disp_o.append(disp) disp_aao[(a1, a2)] = disp_o return [disp for disp in disp_o if disp.r < maxdistance] self.timer.stop('Prepare TCI loop') self.timer.start('Not so complicated loop') for (a1, a2) in atompairs: if a1 >= a2: # Actually this leads to bad load balance. # We should take a1 > a2 or a1 < a2 equally many times. # Maybe decide which of these choices # depending on whether a2 % 1 == 0 continue m1start = M_a[a1] - M1start m2start = M_a[a2] - M2start if m1start >= blocksize1 or m2start >= blocksize2: continue T_expansion = T_expansions.get(a1, a2) Theta_expansion = Theta_expansions.get(a1, a2) P_expansion = P_expansions.get(a1, a2) nm1, nm2 = T_expansion.shape m1stop = min(m1start + nm1, m1max) m2stop = min(m2start + nm2, m2max) if m1stop <= 0 or m2stop <= 0: continue m1start = max(m1start, 0) m2start = max(m2start, 0) J1start = max(0, M1start - M_a[a1]) J2start = max(0, M2start - M_a[a2]) M1stop = J1start + m1stop - m1start J2stop = J2start + m2stop - m2start dTdR_qvmm = T_expansion.zeros((nq, 3), dtype=dtype) dThetadR_qvmm = Theta_expansion.zeros((nq, 3), dtype=dtype) disp_o = get_displacements(a1, a2, phicutoff_a[a1] + phicutoff_a[a2]) for disp in disp_o: disp.evaluate_overlap(T_expansion, dTdR_qvmm) disp.evaluate_overlap(Theta_expansion, dThetadR_qvmm) for u, kpt in enumerate(self.kpt_u): rhoT_mm = rhoT_umm[u][m1start:m1stop, m2start:m2stop] ET_mm = ET_umm[u][m1start:m1stop, m2start:m2stop] Fkin_v = 2.0 * (dTdR_qvmm[kpt.q][:, J1start:M1stop, J2start:J2stop] * rhoT_mm[np.newaxis]).real.sum(-1).sum(-1) Ftheta_v = 2.0 * (dThetadR_qvmm[kpt.q][:, J1start:M1stop, J2start:J2stop] * ET_mm[np.newaxis]).real.sum(-1).sum(-1) Fkin2_av[a1] += Fkin_v Fkin2_av[a2] -= Fkin_v Ftheta2_av[a1] -= Ftheta_v Ftheta2_av[a2] += Ftheta_v Fkin_av = Fkin2_av Ftheta_av = Ftheta2_av self.timer.stop('Not so complicated loop') dHP_and_dSP_aauim = {} a2values = {} for (a2, a3) in atompairs: if not a3 in a2values: a2values[a3] = [] a2values[a3].append(a2) Fatom_av = np.zeros_like(F_av) Frho_av = np.zeros_like(F_av) self.timer.start('Complicated loop') for a1, a3 in atompairs: if a1 == a3: continue m1start = M_a[a1] - M1start if m1start >= blocksize1: continue P_expansion = P_expansions.get(a1, a3) nm1 = P_expansion.shape[0] m1stop = min(m1start + nm1, m1max) if m1stop <= 0: continue m1start = max(m1start, 0) J1start = max(0, M1start - M_a[a1]) J1stop = J1start + m1stop - m1start disp_o = get_displacements(a1, a3, phicutoff_a[a1] + pcutoff_a[a3]) if len(disp_o) == 0: continue dPdR_qvmi = P_expansion.zeros((nq, 3), dtype=dtype) for disp in disp_o: disp.evaluate_overlap(P_expansion, dPdR_qvmi) dPdR_qvmi = dPdR_qvmi[:, :, J1start:J1stop, :].copy() for a2 in a2values[a3]: m2start = M_a[a2] - M2start if m2start >= blocksize2: continue P_expansion2 = P_expansions.get(a2, a3) nm2 = P_expansion2.shape[0] m2stop = min(m2start + nm2, m2max) if m2stop <= 0: continue disp_o = get_displacements(a2, a3, phicutoff_a[a2] + pcutoff_a[a3]) if len(disp_o) == 0: continue m2start = max(m2start, 0) J2start = max(0, M2start - M_a[a2]) J2stop = J2start + m2stop - m2start if (a2, a3) in dHP_and_dSP_aauim: dHP_uim, dSP_uim = dHP_and_dSP_aauim[(a2, a3)] else: P_qmi = P_expansion2.zeros((nq,), dtype=dtype) for disp in disp_o: disp.evaluate_direct(P_expansion2, P_qmi) P_qmi = P_qmi[:, J2start:J2stop].copy() dH_sp = alldH_asp[a3] dS_ii = self.setups[a3].dO_ii dHP_uim = [] dSP_uim = [] for u, kpt in enumerate(self.kpt_u): dH_ii = unpack(dH_sp[kpt.s]) dHP_im = np.dot(P_qmi[kpt.q], dH_ii).T.conj() # XXX only need nq of these dSP_im = np.dot(P_qmi[kpt.q], dS_ii).T.conj() dHP_uim.append(dHP_im) dSP_uim.append(dSP_im) dHP_and_dSP_aauim[(a2, a3)] = dHP_uim, dSP_uim for u, kpt in enumerate(self.kpt_u): rhoT_mm = rhoT_umm[u][m1start:m1stop, m2start:m2stop] ET_mm = ET_umm[u][m1start:m1stop, m2start:m2stop] dPdRdHP_vmm = np.dot(dPdR_qvmi[kpt.q], dHP_uim[u]) dPdRdSP_vmm = np.dot(dPdR_qvmi[kpt.q], dSP_uim[u]) Fatom_c = 2.0 * (dPdRdHP_vmm * rhoT_mm).real.sum(-1).sum(-1) Frho_c = 2.0 * (dPdRdSP_vmm * ET_mm).real.sum(-1).sum(-1) Fatom_av[a1] += Fatom_c Fatom_av[a3] -= Fatom_c Frho_av[a1] -= Frho_c Frho_av[a3] += Frho_c self.timer.stop('Complicated loop') if not isblacs: # Potential contribution # # ----- / d Phi (r) # a \ | mu ~ # F += -2 Re ) | ---------- v (r) Phi (r) dr rho # / | d R nu nu mu # ----- / a # mu in a; nu # self.timer.start('Potential') Fpot_av = np.zeros_like(F_av) for u, kpt in enumerate(self.kpt_u): vt_G = hamiltonian.vt_sG[kpt.s] Fpot_av += bfs.calculate_force_contribution(vt_G, rhoT_uMM[u], kpt.q) self.timer.stop('Potential') # Density matrix contribution from PAW correction # # ----- ----- # a \ a \ b # F += 2 Re ) Z E - 2 Re ) Z E # / mu nu nu mu / mu nu nu mu # ----- ----- # mu nu b; mu in a; nu # # with # b* # ----- dP # b \ i mu b b # Z = ) -------- dS P # mu nu / dR ij j nu # ----- b mu # ij # self.timer.start('Paw correction') Frho_av = np.zeros_like(F_av) for u, kpt in enumerate(self.kpt_u): work_MM = np.zeros((mynao, nao), dtype) ZE_MM = None for b in my_atom_indices: setup = self.setups[b] dO_ii = np.asarray(setup.dO_ii, dtype) dOP_iM = np.zeros((setup.ni, nao), dtype) gemm(1.0, self.P_aqMi[b][kpt.q], dO_ii, 0.0, dOP_iM, 'c') for v in range(3): gemm(1.0, dOP_iM, dPdR_aqvMi[b][kpt.q][v][Mstart:Mstop], 0.0, work_MM, 'n') ZE_MM = (work_MM * ET_uMM[u]).real for a, M1, M2 in slices(): dE = 2 * ZE_MM[M1:M2].sum() Frho_av[a, v] -= dE # the "b; mu in a; nu" term Frho_av[b, v] += dE # the "mu nu" term del work_MM, ZE_MM self.timer.stop('Paw correction') # Atomic density contribution # ----- ----- # a \ a \ b # F += -2 Re ) A rho + 2 Re ) A rho # / mu nu nu mu / mu nu nu mu # ----- ----- # mu nu b; mu in a; nu # # b* # ----- d P # b \ i mu b b # A = ) ------- dH P # mu nu / d R ij j nu # ----- b mu # ij # self.timer.start('Atomic Hamiltonian force') Fatom_av = np.zeros_like(F_av) for u, kpt in enumerate(self.kpt_u): for b in my_atom_indices: H_ii = np.asarray(unpack(hamiltonian.dH_asp[b][kpt.s]), dtype) HP_iM = gemmdot(H_ii, np.ascontiguousarray(self.P_aqMi[b][kpt.q].T.conj())) for v in range(3): dPdR_Mi = dPdR_aqvMi[b][kpt.q][v][Mstart:Mstop] ArhoT_MM = (gemmdot(dPdR_Mi, HP_iM) * rhoT_uMM[u]).real for a, M1, M2 in slices(): dE = 2 * ArhoT_MM[M1:M2].sum() Fatom_av[a, v] += dE # the "b; mu in a; nu" term Fatom_av[b, v] -= dE # the "mu nu" term self.timer.stop('Atomic Hamiltonian force') F_av += Fkin_av + Fpot_av + Ftheta_av + Frho_av + Fatom_av self.timer.start('Wait for sum') ksl.orbital_comm.sum(F_av) if self.bd.comm.rank == 0: self.kpt_comm.sum(F_av, 0) self.timer.stop('Wait for sum') self.timer.stop('LCAO forces') def _get_wave_function_array(self, u, n, realspace=True): kpt = self.kpt_u[u] if kpt.C_nM is None: # Hack to make sure things are available after restart self.lazyloader.load(self) C_M = kpt.C_nM[n] if realspace: psit_G = self.gd.zeros(dtype=self.dtype) self.basis_functions.lcao_to_grid(C_M, psit_G, kpt.q) return psit_G else: return C_M def load_lazily(self, hamiltonian, spos_ac): """Horrible hack to recalculate lcao coefficients after restart.""" self.basis_functions.set_positions(spos_ac) class LazyLoader: def __init__(self, hamiltonian, spos_ac): self.spos_ac = spos_ac def load(self, wfs): wfs.set_positions(self.spos_ac) # this sets rank_a # Now we need to pass wfs.rank_a or things to work # XXX WTF why does one have to fiddle with rank_a??? hamiltonian.set_positions(self.spos_ac, wfs.rank_a) wfs.eigensolver.iterate(hamiltonian, wfs) del wfs.lazyloader self.lazyloader = LazyLoader(hamiltonian, spos_ac) def write(self, writer, write_wave_functions=False): writer['Mode'] = 'lcao' if not write_wave_functions: return writer.dimension('nbasis', self.setups.nao) writer.add('WaveFunctionCoefficients', ('nspins', 'nibzkpts', 'nbands', 'nbasis'), dtype=self.dtype) for s in range(self.nspins): for k in range(self.nibzkpts): C_nM = self.collect_array('C_nM', k, s) writer.fill(C_nM, s, k) def read_coefficients(self, reader): for kpt in self.kpt_u: kpt.C_nM = self.bd.empty(self.setups.nao, dtype=self.dtype) for myn, C_M in enumerate(kpt.C_nM): n = self.bd.global_index(myn) C_M[:] = reader.get('WaveFunctionCoefficients', kpt.s, kpt.k, n) def estimate_memory(self, mem): nq = len(self.kd.ibzk_qc) nao = self.setups.nao ni_total = sum([setup.ni for setup in self.setups]) itemsize = mem.itemsize[self.dtype] mem.subnode('C [qnM]', nq * self.bd.mynbands * nao * itemsize) nM1, nM2 = self.ksl.get_overlap_matrix_shape() mem.subnode('S, T [2 x qmm]', 2 * nq * nM1 * nM2 * itemsize) mem.subnode('P [aqMi]', nq * nao * ni_total // self.gd.comm.size) self.tci.estimate_memory(mem.subnode('TCI')) self.basis_functions.estimate_memory(mem.subnode('BasisFunctions')) self.eigensolver.estimate_memory(mem.subnode('Eigensolver'), self.dtype)
class LCAOWaveFunctions(WaveFunctions): def __init__(self, ksl, gd, nvalence, setups, bd, dtype, world, kd, timer=None): WaveFunctions.__init__(self, gd, nvalence, setups, bd, dtype, world, kd, timer) self.ksl = ksl self.S_qMM = None self.T_qMM = None self.P_aqMi = None self.timer.start('TCI: Evaluate splines') self.tci = NewTCI(gd.cell_cv, gd.pbc_c, setups, kd.ibzk_qc, kd.gamma) self.timer.stop('TCI: Evaluate splines') self.basis_functions = BasisFunctions(gd, [setup.phit_j for setup in setups], kd.comm, cut=True) if not kd.gamma: self.basis_functions.set_k_points(kd.ibzk_qc) def summary(self, fd): fd.write('Mode: LCAO\n') def set_eigensolver(self, eigensolver): WaveFunctions.set_eigensolver(self, eigensolver) eigensolver.initialize(self.gd, self.dtype, self.setups.nao, self.ksl) def set_positions(self, spos_ac): self.timer.start('Basic WFS set positions') WaveFunctions.set_positions(self, spos_ac) self.timer.stop('Basic WFS set positions') self.timer.start('Basis functions set positions') self.basis_functions.set_positions(spos_ac) self.timer.stop('Basis functions set positions') if self.ksl is not None: self.basis_functions.set_matrix_distribution(self.ksl.Mstart, self.ksl.Mstop) nq = len(self.kd.ibzk_qc) nao = self.setups.nao mynbands = self.mynbands Mstop = self.ksl.Mstop Mstart = self.ksl.Mstart mynao = Mstop - Mstart if self.ksl.using_blacs: # XXX # S and T have been distributed to a layout with blacs, so # discard them to force reallocation from scratch. # # TODO: evaluate S and T when they *are* distributed, thus saving # memory and avoiding this problem self.S_qMM = None self.T_qMM = None S_qMM = self.S_qMM T_qMM = self.T_qMM if S_qMM is None: # XXX # First time: assert T_qMM is None if self.ksl.using_blacs: # XXX self.tci.set_matrix_distribution(Mstart, mynao) S_qMM = np.empty((nq, mynao, nao), self.dtype) T_qMM = np.empty((nq, mynao, nao), self.dtype) for kpt in self.kpt_u: if kpt.C_nM is None: kpt.C_nM = np.empty((mynbands, nao), self.dtype) self.allocate_arrays_for_projections( self.basis_functions.my_atom_indices) self.P_aqMi = {} for a in self.basis_functions.my_atom_indices: ni = self.setups[a].ni self.P_aqMi[a] = np.empty((nq, nao, ni), self.dtype) for kpt in self.kpt_u: q = kpt.q kpt.P_aMi = dict([(a, P_qMi[q]) for a, P_qMi in self.P_aqMi.items()]) self.timer.start('TCI: Calculate S, T, P') # Calculate lower triangle of S and T matrices: self.tci.calculate(spos_ac, S_qMM, T_qMM, self.P_aqMi) add_paw_correction_to_overlap(self.setups, self.P_aqMi, S_qMM, self.ksl.Mstart, self.ksl.Mstop) self.timer.stop('TCI: Calculate S, T, P') S_MM = None # allow garbage collection of old S_qMM after redist S_qMM = self.ksl.distribute_overlap_matrix(S_qMM) T_qMM = self.ksl.distribute_overlap_matrix(T_qMM) for kpt in self.kpt_u: q = kpt.q kpt.S_MM = S_qMM[q] kpt.T_MM = T_qMM[q] if (debug and self.band_comm.size == 1 and self.gd.comm.rank == 0 and nao > 0 and not self.ksl.using_blacs): # S and T are summed only on comm master, so check only there from numpy.linalg import eigvalsh self.timer.start('Check positive definiteness') for S_MM in S_qMM: tri2full(S_MM, UL='L') smin = eigvalsh(S_MM).real.min() if smin < 0: raise RuntimeError('Overlap matrix has negative ' 'eigenvalue: %e' % smin) self.timer.stop('Check positive definiteness') self.positions_set = True self.S_qMM = S_qMM self.T_qMM = T_qMM def initialize(self, density, hamiltonian, spos_ac): if density.nt_sG is None: if self.kpt_u[0].f_n is None or self.kpt_u[0].C_nM is None: density.initialize_from_atomic_densities(self.basis_functions) else: # We have the info we need for a density matrix, so initialize # from that instead of from scratch. This will be the case # after set_positions() during a relaxation density.initialize_from_wavefunctions(self) else: # After a restart, nt_sg doesn't exist yet, so we'll have to # make sure it does. Of course, this should have been taken care # of already by this time, so we should improve the code elsewhere density.calculate_normalized_charges_and_mix() hamiltonian.update(density) def calculate_density_matrix(self, f_n, C_nM, rho_MM=None): # ATLAS can't handle uninitialized output array: #rho_MM.fill(42) self.timer.start('Calculate density matrix') rho_MM = self.ksl.calculate_density_matrix(f_n, C_nM, rho_MM) self.timer.stop('Calculate density matrix') return rho_MM # ---------------------------- if 1: # XXX Should not conjugate, but call gemm(..., 'c') # Although that requires knowing C_Mn and not C_nM. # that also conforms better to the usual conventions in literature Cf_Mn = C_nM.T.conj() * f_n gemm(1.0, C_nM, Cf_Mn, 0.0, rho_MM, 'n') self.bd.comm.sum(rho_MM) else: # Alternative suggestion. Might be faster. Someone should test this C_Mn = C_nM.T.copy() r2k(0.5, C_Mn, f_n * C_Mn, 0.0, rho_MM) tri2full(rho_MM) def calculate_density_matrix_delta(self, d_nn, C_nM, rho_MM=None): # ATLAS can't handle uninitialized output array: #rho_MM.fill(42) self.timer.start('Calculate density matrix') rho_MM = self.ksl.calculate_density_matrix_delta(d_nn, C_nM, rho_MM) self.timer.stop('Calculate density matrix') return rho_MM def add_to_density_from_k_point_with_occupation(self, nt_sG, kpt, f_n): """Add contribution to pseudo electron-density. Do not use the standard occupation numbers, but ones given with argument f_n.""" # Custom occupations are used in calculation of response potential # with GLLB-potential Mstart = self.basis_functions.Mstart Mstop = self.basis_functions.Mstop if kpt.rho_MM is None: rho_MM = self.calculate_density_matrix(f_n, kpt.C_nM) if hasattr(kpt, 'c_on'): assert self.bd.comm.size == 1 d_nn = np.zeros((self.bd.mynbands, self.bd.mynbands), dtype=kpt.C_nM.dtype) for ne, c_n in zip(kpt.ne_o, kpt.c_on): d_nn += ne * np.outer(c_n.conj(), c_n) rho_MM += self.calculate_density_matrix_delta(d_nn, kpt.C_nM) else: rho_MM = kpt.rho_MM self.timer.start('Construct density') self.basis_functions.construct_density(rho_MM, nt_sG[kpt.s], kpt.q) self.timer.stop('Construct density') def add_to_density_from_k_point(self, nt_sG, kpt): """Add contribution to pseudo electron-density. """ self.add_to_density_from_k_point_with_occupation(nt_sG, kpt, kpt.f_n) def add_to_kinetic_density_from_k_point(self, taut_G, kpt): raise NotImplementedError('Kinetic density calculation for LCAO ' 'wavefunctions is not implemented.') def calculate_forces(self, hamiltonian, F_av): self.timer.start('LCAO forces') spos_ac = self.tci.atoms.get_scaled_positions() % 1.0 nao = self.ksl.nao mynao = self.ksl.mynao nq = len(self.kd.ibzk_qc) dtype = self.dtype dThetadR_qvMM = np.empty((nq, 3, mynao, nao), dtype) dTdR_qvMM = np.empty((nq, 3, mynao, nao), dtype) dPdR_aqvMi = {} for a in self.basis_functions.my_atom_indices: ni = self.setups[a].ni dPdR_aqvMi[a] = np.empty((nq, 3, nao, ni), dtype) self.timer.start('LCAO forces: tci derivative') self.tci.calculate_derivative(spos_ac, dThetadR_qvMM, dTdR_qvMM, dPdR_aqvMi) #if not hasattr(self.tci, 'set_positions'): # XXX newtci comm = self.gd.comm comm.sum(dThetadR_qvMM) comm.sum(dTdR_qvMM) self.timer.stop('LCAO forces: tci derivative') # TODO: Most contributions will be the same for each spin. for kpt in self.kpt_u: self.calculate_forces_by_kpoint(kpt, hamiltonian, F_av, self.tci, self.P_aqMi, dThetadR_qvMM[kpt.q], dTdR_qvMM[kpt.q], dPdR_aqvMi) self.ksl.orbital_comm.sum(F_av) if self.bd.comm.rank == 0: self.kpt_comm.sum(F_av, 0) self.timer.stop('LCAO forces') def print_arrays_with_ranks(self, names, arrays_nax): # Debugging function for checking properties of distributed arrays # Prints rank, label, list of atomic indices, and element sum # for parts of array on this cpu as a primitive "hash" function my_atom_indices = self.basis_functions.my_atom_indices from gpaw.mpi import rank for name, array_ax in zip(names, arrays_nax): sums = [array_ax[a].sum() for a in my_atom_indices] print rank, name, my_atom_indices, sums def calculate_forces_by_kpoint(self, kpt, hamiltonian, F_av, tci, P_aqMi, dThetadR_vMM, dTdR_vMM, dPdR_aqvMi): k = kpt.k q = kpt.q mynao = self.ksl.mynao nao = self.ksl.nao dtype = self.dtype Mstart = self.ksl.Mstart Mstop = self.ksl.Mstop basis_functions = self.basis_functions my_atom_indices = basis_functions.my_atom_indices atom_indices = basis_functions.atom_indices def _slices(indices): for a in indices: M1 = basis_functions.M_a[a] - Mstart M2 = M1 + self.setups[a].niAO yield a, M1, M2 def slices(): return _slices(atom_indices) def my_slices(): return _slices(my_atom_indices) # # ----- ----- # \ -1 \ * # E = ) S H rho = ) c eps f c # mu nu / mu x x z z nu / n mu n n n nu # ----- ----- # x z n # # We use the transpose of that matrix. The first form is used # if rho is given, otherwise the coefficients are used. self.timer.start('LCAO forces: initial') if kpt.rho_MM is None: rhoT_MM = self.ksl.get_transposed_density_matrix(kpt.f_n, kpt.C_nM) ET_MM = self.ksl.get_transposed_density_matrix(kpt.f_n * kpt.eps_n, kpt.C_nM) if hasattr(kpt, 'c_on'): assert self.bd.comm.size == 1 d_nn = np.zeros((self.bd.mynbands, self.bd.mynbands), dtype=kpt.C_nM.dtype) for ne, c_n in zip(kpt.ne_o, kpt.c_on): d_nn += ne * np.outer(c_n.conj(), c_n) rhoT_MM += self.ksl.get_transposed_density_matrix_delta(d_nn, kpt.C_nM) ET_MM+=self.ksl.get_transposed_density_matrix_delta(d_nn*kpt.eps_n, kpt.C_nM) else: H_MM = self.eigensolver.calculate_hamiltonian_matrix(hamiltonian, self, kpt) tri2full(H_MM) S_MM = self.S_qMM[q].copy() tri2full(S_MM) ET_MM = np.linalg.solve(S_MM, gemmdot(H_MM, kpt.rho_MM)).T.copy() del S_MM, H_MM rhoT_MM = kpt.rho_MM.T.copy() self.timer.stop('LCAO forces: initial') # Kinetic energy contribution # # ----- d T # a \ mu nu # F += 2 Re ) -------- rho # / d R nu mu # ----- mu nu # mu in a; nu # Fkin_av = np.zeros_like(F_av) dEdTrhoT_vMM = (dTdR_vMM * rhoT_MM[np.newaxis]).real for a, M1, M2 in my_slices(): Fkin_av[a, :] = 2 * dEdTrhoT_vMM[:, M1:M2].sum(-1).sum(-1) del dEdTrhoT_vMM # Potential contribution # # ----- / d Phi (r) # a \ | mu ~ # F += -2 Re ) | ---------- v (r) Phi (r) dr rho # / | d R nu nu mu # ----- / a # mu in a; nu # self.timer.start('LCAO forces: potential') Fpot_av = np.zeros_like(F_av) vt_G = hamiltonian.vt_sG[kpt.s] DVt_vMM = np.zeros((3, mynao, nao), dtype) # Note that DVt_vMM contains dPhi(r) / dr = - dPhi(r) / dR^a basis_functions.calculate_potential_matrix_derivative(vt_G, DVt_vMM, q) for a, M1, M2 in slices(): for v in range(3): Fpot_av[a, v] = 2 * (DVt_vMM[v, M1:M2, :] * rhoT_MM[M1:M2, :]).real.sum() del DVt_vMM self.timer.stop('LCAO forces: potential') # Density matrix contribution due to basis overlap # # ----- d Theta # a \ mu nu # F += -2 Re ) ------------ E # / d R nu mu # ----- mu nu # mu in a; nu # Frho_av = np.zeros_like(F_av) dThetadRE_vMM = (dThetadR_vMM * ET_MM[np.newaxis]).real for a, M1, M2 in my_slices(): Frho_av[a, :] = -2 * dThetadRE_vMM[:, M1:M2].sum(-1).sum(-1) del dThetadRE_vMM # Density matrix contribution from PAW correction # # ----- ----- # a \ a \ b # F += 2 Re ) Z E - 2 Re ) Z E # / mu nu nu mu / mu nu nu mu # ----- ----- # mu nu b; mu in a; nu # # with # b* # ----- dP # b \ i mu b b # Z = ) -------- dS P # mu nu / dR ij j nu # ----- b mu # ij # self.timer.start('LCAO forces: paw correction') dPdR_avMi = dict([(a, dPdR_aqvMi[a][q]) for a in my_atom_indices]) work_MM = np.zeros((mynao, nao), dtype) ZE_MM = None for b in my_atom_indices: setup = self.setups[b] dO_ii = np.asarray(setup.dO_ii, dtype) dOP_iM = np.zeros((setup.ni, nao), dtype) gemm(1.0, self.P_aqMi[b][q], dO_ii, 0.0, dOP_iM, 'c') for v in range(3): gemm(1.0, dOP_iM, dPdR_avMi[b][v][Mstart:Mstop], 0.0, work_MM, 'n') ZE_MM = (work_MM * ET_MM).real for a, M1, M2 in slices(): dE = 2 * ZE_MM[M1:M2].sum() Frho_av[a, v] -= dE # the "b; mu in a; nu" term Frho_av[b, v] += dE # the "mu nu" term del work_MM, ZE_MM self.timer.stop('LCAO forces: paw correction') # Atomic density contribution # ----- ----- # a \ a \ b # F += -2 Re ) A rho + 2 Re ) A rho # / mu nu nu mu / mu nu nu mu # ----- ----- # mu nu b; mu in a; nu # # b* # ----- d P # b \ i mu b b # A = ) ------- dH P # mu nu / d R ij j nu # ----- b mu # ij # self.timer.start('LCAO forces: atomic density') Fatom_av = np.zeros_like(F_av) for b in my_atom_indices: H_ii = np.asarray(unpack(hamiltonian.dH_asp[b][kpt.s]), dtype) HP_iM = gemmdot(H_ii, np.conj(self.P_aqMi[b][q].T)) for v in range(3): dPdR_Mi = dPdR_avMi[b][v][Mstart:Mstop] ArhoT_MM = (gemmdot(dPdR_Mi, HP_iM) * rhoT_MM).real for a, M1, M2 in slices(): dE = 2 * ArhoT_MM[M1:M2].sum() Fatom_av[a, v] += dE # the "b; mu in a; nu" term Fatom_av[b, v] -= dE # the "mu nu" term self.timer.stop('LCAO forces: atomic density') F_av += Fkin_av + Fpot_av + Frho_av + Fatom_av def _get_wave_function_array(self, u, n): kpt = self.kpt_u[u] C_nM = kpt.C_nM if C_nM is None: # Hack to make sure things are available after restart self.lazyloader.load(self) psit_G = self.gd.zeros(dtype=self.dtype) psit_1G = psit_G.reshape(1, -1) C_1M = kpt.C_nM[n].reshape(1, -1) q = kpt.q # Should we enforce q=-1 for gamma-point? if self.kd.gamma: q = -1 self.basis_functions.lcao_to_grid(C_1M, psit_1G, q) return psit_G def load_lazily(self, hamiltonian, spos_ac): """Horrible hack to recalculate lcao coefficients after restart.""" class LazyLoader: def __init__(self, hamiltonian, spos_ac): self.hamiltonian = hamiltonian self.spos_ac = spos_ac def load(self, wfs): wfs.set_positions(self.spos_ac) wfs.eigensolver.iterate(hamiltonian, wfs) del wfs.lazyloader self.lazyloader = LazyLoader(hamiltonian, spos_ac) def write_wave_functions(self, writer): if self.world.rank == 0: writer.dimension('nbasis', self.setups.nao) writer.add('WaveFunctionCoefficients', ('nspins', 'nibzkpts', 'nbands', 'nbasis'), dtype=self.dtype) for s in range(self.nspins): for k in range(self.nibzkpts): C_nM = self.collect_array('C_nM', k, s) if self.world.rank == 0: writer.fill(C_nM, s, k) def read_coefficients(self, reader): for kpt in self.kpt_u: kpt.C_nM = self.bd.empty(self.setups.nao, dtype=self.dtype) for n in self.bd.get_band_indices(): kpt.C_nM[n] = reader.get('WaveFunctionCoefficients', kpt.s, kpt.k, n) def estimate_memory(self, mem): nq = len(self.kd.ibzk_qc) nao = self.setups.nao ni_total = sum([setup.ni for setup in self.setups]) itemsize = mem.itemsize[self.dtype] mem.subnode('C [qnM]', nq * self.mynbands * nao * itemsize) nM1, nM2 = self.ksl.get_overlap_matrix_shape() mem.subnode('S, T [2 x qmm]', 2 * nq * nM1 * nM2 * itemsize) mem.subnode('P [aqMi]', nq * nao * ni_total // self.gd.comm.size) self.tci.estimate_memory(mem.subnode('TCI')) self.basis_functions.estimate_memory(mem.subnode('BasisFunctions')) self.eigensolver.estimate_memory(mem.subnode('Eigensolver'), self.dtype)
class LCAOWaveFunctions(WaveFunctions): mode = 'lcao' def __init__(self, ksl, gd, nvalence, setups, bd, dtype, world, kd, kptband_comm, timer, atomic_hamiltonian=None): WaveFunctions.__init__(self, gd, nvalence, setups, bd, dtype, world, kd, kptband_comm, timer) self.ksl = ksl self.S_qMM = None self.T_qMM = None self.P_aqMi = None if atomic_hamiltonian is None: if ksl.using_blacs: atomic_hamiltonian = 'distributed' else: atomic_hamiltonian = 'dense' if isinstance(atomic_hamiltonian, str): atomic_hamiltonian = get_atomic_hamiltonian(atomic_hamiltonian) self.atomic_hamiltonian = atomic_hamiltonian self.timer.start('TCI: Evaluate splines') self.tci = NewTCI(gd.cell_cv, gd.pbc_c, setups, kd.ibzk_qc, kd.gamma) self.timer.stop('TCI: Evaluate splines') self.basis_functions = BasisFunctions( gd, [setup.phit_j for setup in setups], kd, dtype=dtype, cut=True) def empty(self, n=(), global_array=False, realspace=False): if realspace: return self.gd.empty(n, self.dtype, global_array) else: if isinstance(n, int): n = (n, ) nao = self.setups.nao return np.empty(n + (nao, ), self.dtype) def summary(self, fd): fd.write('Wave functions: LCAO\n') fd.write(' Diagonalizer: %s\n' % self.ksl.get_description()) fd.write(' Atomic Hamiltonian: %s\n' % self.atomic_hamiltonian.description) def set_eigensolver(self, eigensolver): WaveFunctions.set_eigensolver(self, eigensolver) eigensolver.initialize(self.gd, self.dtype, self.setups.nao, self.ksl) def set_positions(self, spos_ac): self.timer.start('Basic WFS set positions') WaveFunctions.set_positions(self, spos_ac) self.timer.stop('Basic WFS set positions') self.timer.start('Basis functions set positions') self.basis_functions.set_positions(spos_ac) self.timer.stop('Basis functions set positions') if self.ksl is not None: self.basis_functions.set_matrix_distribution( self.ksl.Mstart, self.ksl.Mstop) nq = len(self.kd.ibzk_qc) nao = self.setups.nao mynbands = self.bd.mynbands Mstop = self.ksl.Mstop Mstart = self.ksl.Mstart mynao = Mstop - Mstart if self.ksl.using_blacs: # XXX # S and T have been distributed to a layout with blacs, so # discard them to force reallocation from scratch. # # TODO: evaluate S and T when they *are* distributed, thus saving # memory and avoiding this problem self.S_qMM = None self.T_qMM = None S_qMM = self.S_qMM T_qMM = self.T_qMM if S_qMM is None: # XXX # First time: assert T_qMM is None if self.ksl.using_blacs: # XXX self.tci.set_matrix_distribution(Mstart, mynao) S_qMM = np.empty((nq, mynao, nao), self.dtype) T_qMM = np.empty((nq, mynao, nao), self.dtype) for kpt in self.kpt_u: if kpt.C_nM is None: kpt.C_nM = np.empty((mynbands, nao), self.dtype) self.allocate_arrays_for_projections( self.basis_functions.my_atom_indices) self.P_aqMi = {} for a in self.basis_functions.my_atom_indices: ni = self.setups[a].ni self.P_aqMi[a] = np.empty((nq, nao, ni), self.dtype) self.timer.start('TCI: Calculate S, T, P') # Calculate lower triangle of S and T matrices: self.tci.calculate(spos_ac, S_qMM, T_qMM, self.P_aqMi) # XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX from gpaw.lcao.newoverlap import newoverlap self.P_neighbors_a, self.P_aaqim, self.newP_aqMi \ = newoverlap(self, spos_ac) # XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX for kpt in self.kpt_u: q = kpt.q kpt.P_aMi = dict([(a, P_qMi[q]) for a, P_qMi in self.P_aqMi.items()]) kpt.P_aaim = dict([(a1a2, P_qim[q]) for a1a2, P_qim in self.P_aaqim.items()]) add_paw_correction_to_overlap(self.setups, self.P_aqMi, S_qMM, self.ksl.Mstart, self.ksl.Mstop) self.timer.stop('TCI: Calculate S, T, P') S_MM = None # allow garbage collection of old S_qMM after redist S_qMM = self.ksl.distribute_overlap_matrix(S_qMM, root=-1) T_qMM = self.ksl.distribute_overlap_matrix(T_qMM, root=-1) for kpt in self.kpt_u: q = kpt.q kpt.S_MM = S_qMM[q] kpt.T_MM = T_qMM[q] if (debug and self.band_comm.size == 1 and self.gd.comm.rank == 0 and nao > 0 and not self.ksl.using_blacs): # S and T are summed only on comm master, so check only there from numpy.linalg import eigvalsh self.timer.start('Check positive definiteness') for S_MM in S_qMM: tri2full(S_MM, UL='L') smin = eigvalsh(S_MM).real.min() if smin < 0: raise RuntimeError('Overlap matrix has negative ' 'eigenvalue: %e' % smin) self.timer.stop('Check positive definiteness') self.positions_set = True self.S_qMM = S_qMM self.T_qMM = T_qMM def initialize(self, density, hamiltonian, spos_ac): self.timer.start('LCAO WFS Initialize') if density.nt_sG is None: if self.kpt_u[0].f_n is None or self.kpt_u[0].C_nM is None: density.initialize_from_atomic_densities(self.basis_functions) else: # We have the info we need for a density matrix, so initialize # from that instead of from scratch. This will be the case # after set_positions() during a relaxation density.initialize_from_wavefunctions(self) # Initialize GLLB-potential from basis function orbitals if hamiltonian.xc.type == 'GLLB': hamiltonian.xc.initialize_from_atomic_orbitals(\ self.basis_functions) else: # After a restart, nt_sg doesn't exist yet, so we'll have to # make sure it does. Of course, this should have been taken care # of already by this time, so we should improve the code elsewhere density.calculate_normalized_charges_and_mix() #print "Updating hamiltonian in LCAO initialize wfs" hamiltonian.update(density) self.timer.stop('LCAO WFS Initialize') def initialize_wave_functions_from_lcao(self): """ Fill the calc.wfs.kpt_[u].psit_nG arrays with usefull data. Normally psit_nG is NOT used in lcao mode, but some extensions (like ase.dft.wannier) want to have it. This code is adapted from fd.py / initialize_from_lcao_coefficients() and fills psit_nG with data constructed from the current lcao coefficients (kpt.C_nM). (This may or may not work in band-parallel case!) """ #print('initialize_wave_functions_from_lcao') bfs = self.basis_functions for kpt in self.kpt_u: #print("kpt: {0}".format(kpt)) kpt.psit_nG = self.gd.zeros(self.bd.nbands, self.dtype) bfs.lcao_to_grid(kpt.C_nM, kpt.psit_nG[:self.bd.mynbands], kpt.q) # kpt.C_nM = None def initialize_wave_functions_from_restart_file(self): """Dummy function to ensure compatibility to fd mode""" self.initialize_wave_functions_from_lcao() def calculate_density_matrix(self, f_n, C_nM, rho_MM=None): # ATLAS can't handle uninitialized output array: #rho_MM.fill(42) self.timer.start('Calculate density matrix') rho_MM = self.ksl.calculate_density_matrix(f_n, C_nM, rho_MM) self.timer.stop('Calculate density matrix') return rho_MM # ---------------------------- if 1: # XXX Should not conjugate, but call gemm(..., 'c') # Although that requires knowing C_Mn and not C_nM. # that also conforms better to the usual conventions in literature Cf_Mn = C_nM.T.conj() * f_n self.timer.start('gemm') gemm(1.0, C_nM, Cf_Mn, 0.0, rho_MM, 'n') self.timer.stop('gemm') self.timer.start('band comm sum') self.bd.comm.sum(rho_MM) self.timer.stop('band comm sum') else: # Alternative suggestion. Might be faster. Someone should test this from gpaw.utilities.blas import r2k C_Mn = C_nM.T.copy() r2k(0.5, C_Mn, f_n * C_Mn, 0.0, rho_MM) tri2full(rho_MM) def calculate_density_matrix_delta(self, d_nn, C_nM, rho_MM=None): # ATLAS can't handle uninitialized output array: #rho_MM.fill(42) self.timer.start('Calculate density matrix') rho_MM = self.ksl.calculate_density_matrix_delta(d_nn, C_nM, rho_MM) self.timer.stop('Calculate density matrix') return rho_MM def add_to_density_from_k_point_with_occupation(self, nt_sG, kpt, f_n): """Add contribution to pseudo electron-density. Do not use the standard occupation numbers, but ones given with argument f_n.""" # Custom occupations are used in calculation of response potential # with GLLB-potential if kpt.rho_MM is None: rho_MM = self.calculate_density_matrix(f_n, kpt.C_nM) if hasattr(kpt, 'c_on'): assert self.bd.comm.size == 1 d_nn = np.zeros((self.bd.mynbands, self.bd.mynbands), dtype=kpt.C_nM.dtype) for ne, c_n in zip(kpt.ne_o, kpt.c_on): assert abs(c_n.imag).max() < 1e-14 d_nn += ne * np.outer(c_n.conj(), c_n).real rho_MM += self.calculate_density_matrix_delta(d_nn, kpt.C_nM) else: rho_MM = kpt.rho_MM self.timer.start('Construct density') self.basis_functions.construct_density(rho_MM, nt_sG[kpt.s], kpt.q) self.timer.stop('Construct density') def add_to_kinetic_density_from_k_point(self, taut_G, kpt): raise NotImplementedError('Kinetic density calculation for LCAO ' 'wavefunctions is not implemented.') def calculate_forces(self, hamiltonian, F_av): self.timer.start('LCAO forces') spos_ac = self.tci.atoms.get_scaled_positions() % 1.0 ksl = self.ksl nao = ksl.nao mynao = ksl.mynao nq = len(self.kd.ibzk_qc) dtype = self.dtype tci = self.tci gd = self.gd bfs = self.basis_functions Mstart = ksl.Mstart Mstop = ksl.Mstop from gpaw.kohnsham_layouts import BlacsOrbitalLayouts isblacs = isinstance(ksl, BlacsOrbitalLayouts) # XXX if not isblacs: self.timer.start('TCI derivative') dThetadR_qvMM = np.empty((nq, 3, mynao, nao), dtype) dTdR_qvMM = np.empty((nq, 3, mynao, nao), dtype) dPdR_aqvMi = {} for a in self.basis_functions.my_atom_indices: ni = self.setups[a].ni dPdR_aqvMi[a] = np.empty((nq, 3, nao, ni), dtype) tci.calculate_derivative(spos_ac, dThetadR_qvMM, dTdR_qvMM, dPdR_aqvMi) gd.comm.sum(dThetadR_qvMM) gd.comm.sum(dTdR_qvMM) self.timer.stop('TCI derivative') my_atom_indices = bfs.my_atom_indices atom_indices = bfs.atom_indices def _slices(indices): for a in indices: M1 = bfs.M_a[a] - Mstart M2 = M1 + self.setups[a].nao if M2 > 0: yield a, max(0, M1), M2 def slices(): return _slices(atom_indices) def my_slices(): return _slices(my_atom_indices) # # ----- ----- # \ -1 \ * # E = ) S H rho = ) c eps f c # mu nu / mu x x z z nu / n mu n n n nu # ----- ----- # x z n # # We use the transpose of that matrix. The first form is used # if rho is given, otherwise the coefficients are used. self.timer.start('Initial') rhoT_uMM = [] ET_uMM = [] if not isblacs: if self.kpt_u[0].rho_MM is None: self.timer.start('Get density matrix') for kpt in self.kpt_u: rhoT_MM = ksl.get_transposed_density_matrix( kpt.f_n, kpt.C_nM) rhoT_uMM.append(rhoT_MM) ET_MM = ksl.get_transposed_density_matrix( kpt.f_n * kpt.eps_n, kpt.C_nM) ET_uMM.append(ET_MM) if hasattr(kpt, 'c_on'): # XXX does this work with BLACS/non-BLACS/etc.? assert self.bd.comm.size == 1 d_nn = np.zeros((self.bd.mynbands, self.bd.mynbands), dtype=kpt.C_nM.dtype) for ne, c_n in zip(kpt.ne_o, kpt.c_on): d_nn += ne * np.outer(c_n.conj(), c_n) rhoT_MM += ksl.get_transposed_density_matrix_delta(\ d_nn, kpt.C_nM) ET_MM += ksl.get_transposed_density_matrix_delta(\ d_nn * kpt.eps_n, kpt.C_nM) self.timer.stop('Get density matrix') else: rhoT_uMM = [] ET_uMM = [] for kpt in self.kpt_u: H_MM = self.eigensolver.calculate_hamiltonian_matrix(\ hamiltonian, self, kpt) tri2full(H_MM) S_MM = kpt.S_MM.copy() tri2full(S_MM) ET_MM = np.linalg.solve(S_MM, gemmdot(H_MM, kpt.rho_MM)).T.copy() del S_MM, H_MM rhoT_MM = kpt.rho_MM.T.copy() rhoT_uMM.append(rhoT_MM) ET_uMM.append(ET_MM) self.timer.stop('Initial') if isblacs: # XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX from gpaw.blacs import BlacsGrid, Redistributor def get_density_matrix(f_n, C_nM, redistributor): rho1_mm = ksl.calculate_blocked_density_matrix(f_n, C_nM).conj() rho_mm = redistributor.redistribute(rho1_mm) return rho_mm pcutoff_a = [ max([pt.get_cutoff() for pt in setup.pt_j]) for setup in self.setups ] phicutoff_a = [ max([phit.get_cutoff() for phit in setup.phit_j]) for setup in self.setups ] # XXX should probably use bdsize x gdsize instead # That would be consistent with some existing grids grid = BlacsGrid(ksl.block_comm, self.gd.comm.size, self.bd.comm.size) blocksize1 = -(-nao // grid.nprow) blocksize2 = -(-nao // grid.npcol) # XXX what are rows and columns actually? desc = grid.new_descriptor(nao, nao, blocksize1, blocksize2) rhoT_umm = [] ET_umm = [] redistributor = Redistributor(grid.comm, ksl.mmdescriptor, desc) Fpot_av = np.zeros_like(F_av) for u, kpt in enumerate(self.kpt_u): self.timer.start('Get density matrix') rhoT_mm = get_density_matrix(kpt.f_n, kpt.C_nM, redistributor) rhoT_umm.append(rhoT_mm) self.timer.stop('Get density matrix') self.timer.start('Potential') rhoT_mM = ksl.distribute_to_columns(rhoT_mm, desc) vt_G = hamiltonian.vt_sG[kpt.s] Fpot_av += bfs.calculate_force_contribution( vt_G, rhoT_mM, kpt.q) del rhoT_mM self.timer.stop('Potential') self.timer.start('Get density matrix') for kpt in self.kpt_u: ET_mm = get_density_matrix(kpt.f_n * kpt.eps_n, kpt.C_nM, redistributor) ET_umm.append(ET_mm) self.timer.stop('Get density matrix') M1start = blocksize1 * grid.myrow M2start = blocksize2 * grid.mycol M1stop = min(M1start + blocksize1, nao) M2stop = min(M2start + blocksize2, nao) m1max = M1stop - M1start m2max = M2stop - M2start if not isblacs: # Kinetic energy contribution # # ----- d T # a \ mu nu # F += 2 Re ) -------- rho # / d R nu mu # ----- mu nu # mu in a; nu # Fkin_av = np.zeros_like(F_av) for u, kpt in enumerate(self.kpt_u): dEdTrhoT_vMM = (dTdR_qvMM[kpt.q] * rhoT_uMM[u][np.newaxis]).real for a, M1, M2 in my_slices(): Fkin_av[a, :] += \ 2.0 * dEdTrhoT_vMM[:, M1:M2].sum(-1).sum(-1) del dEdTrhoT_vMM # Density matrix contribution due to basis overlap # # ----- d Theta # a \ mu nu # F += -2 Re ) ------------ E # / d R nu mu # ----- mu nu # mu in a; nu # Ftheta_av = np.zeros_like(F_av) for u, kpt in enumerate(self.kpt_u): dThetadRE_vMM = (dThetadR_qvMM[kpt.q] * ET_uMM[u][np.newaxis]).real for a, M1, M2 in my_slices(): Ftheta_av[a, :] += \ -2.0 * dThetadRE_vMM[:, M1:M2].sum(-1).sum(-1) del dThetadRE_vMM if isblacs: from gpaw.lcao.overlap import TwoCenterIntegralCalculator self.timer.start('Prepare TCI loop') M_a = bfs.M_a Fkin2_av = np.zeros_like(F_av) Ftheta2_av = np.zeros_like(F_av) cell_cv = tci.atoms.cell spos_ac = tci.atoms.get_scaled_positions() % 1.0 overlapcalc = TwoCenterIntegralCalculator(self.kd.ibzk_qc, derivative=False) # XXX this is not parallel *AT ALL*. self.timer.start('Get neighbors') nl = tci.atompairs.pairs.neighbors r_and_offset_aao = get_r_and_offsets(nl, spos_ac, cell_cv) atompairs = r_and_offset_aao.keys() atompairs.sort() self.timer.stop('Get neighbors') T_expansions = tci.T_expansions Theta_expansions = tci.Theta_expansions P_expansions = tci.P_expansions nq = len(self.kd.ibzk_qc) dH_asp = hamiltonian.dH_asp self.timer.start('broadcast dH') alldH_asp = {} for a in range(len(self.setups)): gdrank = bfs.sphere_a[a].rank if gdrank == gd.rank: dH_sp = dH_asp[a] else: ni = self.setups[a].ni dH_sp = np.empty((self.nspins, ni * (ni + 1) // 2)) gd.comm.broadcast(dH_sp, gdrank) # okay, now everyone gets copies of dH_sp alldH_asp[a] = dH_sp self.timer.stop('broadcast dH') # This will get sort of hairy. We need to account for some # three-center overlaps, such as: # # a1 # Phi ~a3 a3 ~a3 a2 a2,a1 # < ---- |p > dH <p |Phi > rho # dR # # To this end we will loop over all pairs of atoms (a1, a3), # and then a sub-loop over (a3, a2). from gpaw.lcao.overlap import DerivativeAtomicDisplacement class Displacement(DerivativeAtomicDisplacement): def __init__(self, a1, a2, R_c, offset): phases = overlapcalc.phaseclass(overlapcalc.ibzk_qc, offset) DerivativeAtomicDisplacement.__init__( self, None, a1, a2, R_c, offset, phases) # Cache of Displacement objects with spherical harmonics with # evaluated spherical harmonics. disp_aao = {} def get_displacements(a1, a2, maxdistance): # XXX the way maxdistance is handled it can lead to # bad caching when different maxdistances are passed # to subsequent calls with same pair of atoms disp_o = disp_aao.get((a1, a2)) if disp_o is None: disp_o = [] for R_c, offset in r_and_offset_aao[(a1, a2)]: if np.linalg.norm(R_c) > maxdistance: continue disp = Displacement(a1, a2, R_c, offset) disp_o.append(disp) disp_aao[(a1, a2)] = disp_o return [disp for disp in disp_o if disp.r < maxdistance] self.timer.stop('Prepare TCI loop') self.timer.start('Not so complicated loop') for (a1, a2) in atompairs: if a1 >= a2: # Actually this leads to bad load balance. # We should take a1 > a2 or a1 < a2 equally many times. # Maybe decide which of these choices # depending on whether a2 % 1 == 0 continue m1start = M_a[a1] - M1start m2start = M_a[a2] - M2start if m1start >= blocksize1 or m2start >= blocksize2: continue # (we have only one block per CPU) T_expansion = T_expansions.get(a1, a2) Theta_expansion = Theta_expansions.get(a1, a2) #P_expansion = P_expansions.get(a1, a2) nm1, nm2 = T_expansion.shape m1stop = min(m1start + nm1, m1max) m2stop = min(m2start + nm2, m2max) if m1stop <= 0 or m2stop <= 0: continue m1start = max(m1start, 0) m2start = max(m2start, 0) J1start = max(0, M1start - M_a[a1]) J2start = max(0, M2start - M_a[a2]) M1stop = J1start + m1stop - m1start J2stop = J2start + m2stop - m2start dTdR_qvmm = T_expansion.zeros((nq, 3), dtype=dtype) dThetadR_qvmm = Theta_expansion.zeros((nq, 3), dtype=dtype) disp_o = get_displacements(a1, a2, phicutoff_a[a1] + phicutoff_a[a2]) for disp in disp_o: disp.evaluate_overlap(T_expansion, dTdR_qvmm) disp.evaluate_overlap(Theta_expansion, dThetadR_qvmm) for u, kpt in enumerate(self.kpt_u): rhoT_mm = rhoT_umm[u][m1start:m1stop, m2start:m2stop] ET_mm = ET_umm[u][m1start:m1stop, m2start:m2stop] Fkin_v = 2.0 * ( dTdR_qvmm[kpt.q][:, J1start:M1stop, J2start:J2stop] * rhoT_mm[np.newaxis]).real.sum(-1).sum(-1) Ftheta_v = 2.0 * (dThetadR_qvmm[kpt.q][:, J1start:M1stop, J2start:J2stop] * ET_mm[np.newaxis]).real.sum(-1).sum(-1) Fkin2_av[a1] += Fkin_v Fkin2_av[a2] -= Fkin_v Ftheta2_av[a1] -= Ftheta_v Ftheta2_av[a2] += Ftheta_v Fkin_av = Fkin2_av Ftheta_av = Ftheta2_av self.timer.stop('Not so complicated loop') dHP_and_dSP_aauim = {} a2values = {} for (a2, a3) in atompairs: if not a3 in a2values: a2values[a3] = [] a2values[a3].append(a2) Fatom_av = np.zeros_like(F_av) Frho_av = np.zeros_like(F_av) self.timer.start('Complicated loop') for a1, a3 in atompairs: if a1 == a3: # Functions reside on same atom, so their overlap # does not change when atom is displaced continue m1start = M_a[a1] - M1start if m1start >= blocksize1: continue P_expansion = P_expansions.get(a1, a3) nm1 = P_expansion.shape[0] m1stop = min(m1start + nm1, m1max) if m1stop <= 0: continue m1start = max(m1start, 0) J1start = max(0, M1start - M_a[a1]) J1stop = J1start + m1stop - m1start disp_o = get_displacements(a1, a3, phicutoff_a[a1] + pcutoff_a[a3]) if len(disp_o) == 0: continue dPdR_qvmi = P_expansion.zeros((nq, 3), dtype=dtype) for disp in disp_o: disp.evaluate_overlap(P_expansion, dPdR_qvmi) dPdR_qvmi = dPdR_qvmi[:, :, J1start:J1stop, :].copy() for a2 in a2values[a3]: m2start = M_a[a2] - M2start if m2start >= blocksize2: continue P_expansion2 = P_expansions.get(a2, a3) nm2 = P_expansion2.shape[0] m2stop = min(m2start + nm2, m2max) if m2stop <= 0: continue disp_o = get_displacements(a2, a3, phicutoff_a[a2] + pcutoff_a[a3]) if len(disp_o) == 0: continue m2start = max(m2start, 0) J2start = max(0, M2start - M_a[a2]) J2stop = J2start + m2stop - m2start if (a2, a3) in dHP_and_dSP_aauim: dHP_uim, dSP_uim = dHP_and_dSP_aauim[(a2, a3)] else: P_qmi = P_expansion2.zeros((nq, ), dtype=dtype) for disp in disp_o: disp.evaluate_direct(P_expansion2, P_qmi) P_qmi = P_qmi[:, J2start:J2stop].copy() dH_sp = alldH_asp[a3] dS_ii = self.setups[a3].dO_ii dHP_uim = [] dSP_uim = [] for u, kpt in enumerate(self.kpt_u): dH_ii = unpack(dH_sp[kpt.s]) dHP_im = np.dot(P_qmi[kpt.q], dH_ii).T.conj() # XXX only need nq of these dSP_im = np.dot(P_qmi[kpt.q], dS_ii).T.conj() dHP_uim.append(dHP_im) dSP_uim.append(dSP_im) dHP_and_dSP_aauim[(a2, a3)] = dHP_uim, dSP_uim for u, kpt in enumerate(self.kpt_u): rhoT_mm = rhoT_umm[u][m1start:m1stop, m2start:m2stop] ET_mm = ET_umm[u][m1start:m1stop, m2start:m2stop] dPdRdHP_vmm = np.dot(dPdR_qvmi[kpt.q], dHP_uim[u]) dPdRdSP_vmm = np.dot(dPdR_qvmi[kpt.q], dSP_uim[u]) Fatom_c = 2.0 * (dPdRdHP_vmm * rhoT_mm).real.sum(-1).sum(-1) Frho_c = 2.0 * (dPdRdSP_vmm * ET_mm).real.sum(-1).sum(-1) Fatom_av[a1] += Fatom_c Fatom_av[a3] -= Fatom_c Frho_av[a1] -= Frho_c Frho_av[a3] += Frho_c self.timer.stop('Complicated loop') if not isblacs: # Potential contribution # # ----- / d Phi (r) # a \ | mu ~ # F += -2 Re ) | ---------- v (r) Phi (r) dr rho # / | d R nu nu mu # ----- / a # mu in a; nu # self.timer.start('Potential') Fpot_av = np.zeros_like(F_av) for u, kpt in enumerate(self.kpt_u): vt_G = hamiltonian.vt_sG[kpt.s] Fpot_av += bfs.calculate_force_contribution( vt_G, rhoT_uMM[u], kpt.q) self.timer.stop('Potential') # Density matrix contribution from PAW correction # # ----- ----- # a \ a \ b # F += 2 Re ) Z E - 2 Re ) Z E # / mu nu nu mu / mu nu nu mu # ----- ----- # mu nu b; mu in a; nu # # with # b* # ----- dP # b \ i mu b b # Z = ) -------- dS P # mu nu / dR ij j nu # ----- b mu # ij # self.timer.start('Paw correction') Frho_av = np.zeros_like(F_av) for u, kpt in enumerate(self.kpt_u): work_MM = np.zeros((mynao, nao), dtype) ZE_MM = None for b in my_atom_indices: setup = self.setups[b] dO_ii = np.asarray(setup.dO_ii, dtype) dOP_iM = np.zeros((setup.ni, nao), dtype) gemm(1.0, self.P_aqMi[b][kpt.q], dO_ii, 0.0, dOP_iM, 'c') for v in range(3): gemm(1.0, dOP_iM, dPdR_aqvMi[b][kpt.q][v][Mstart:Mstop], 0.0, work_MM, 'n') ZE_MM = (work_MM * ET_uMM[u]).real for a, M1, M2 in slices(): dE = 2 * ZE_MM[M1:M2].sum() Frho_av[a, v] -= dE # the "b; mu in a; nu" term Frho_av[b, v] += dE # the "mu nu" term del work_MM, ZE_MM self.timer.stop('Paw correction') # Atomic density contribution # ----- ----- # a \ a \ b # F += -2 Re ) A rho + 2 Re ) A rho # / mu nu nu mu / mu nu nu mu # ----- ----- # mu nu b; mu in a; nu # # b* # ----- d P # b \ i mu b b # A = ) ------- dH P # mu nu / d R ij j nu # ----- b mu # ij # self.timer.start('Atomic Hamiltonian force') Fatom_av = np.zeros_like(F_av) for u, kpt in enumerate(self.kpt_u): for b in my_atom_indices: H_ii = np.asarray(unpack(hamiltonian.dH_asp[b][kpt.s]), dtype) HP_iM = gemmdot( H_ii, np.ascontiguousarray(self.P_aqMi[b][kpt.q].T.conj())) for v in range(3): dPdR_Mi = dPdR_aqvMi[b][kpt.q][v][Mstart:Mstop] ArhoT_MM = (gemmdot(dPdR_Mi, HP_iM) * rhoT_uMM[u]).real for a, M1, M2 in slices(): dE = 2 * ArhoT_MM[M1:M2].sum() Fatom_av[a, v] += dE # the "b; mu in a; nu" term Fatom_av[b, v] -= dE # the "mu nu" term self.timer.stop('Atomic Hamiltonian force') F_av += Fkin_av + Fpot_av + Ftheta_av + Frho_av + Fatom_av self.timer.start('Wait for sum') ksl.orbital_comm.sum(F_av) if self.bd.comm.rank == 0: self.kd.comm.sum(F_av, 0) self.timer.stop('Wait for sum') self.timer.stop('LCAO forces') def _get_wave_function_array(self, u, n, realspace=True): kpt = self.kpt_u[u] if kpt.C_nM is None: # Hack to make sure things are available after restart self.lazyloader.load(self) C_M = kpt.C_nM[n] if realspace: psit_G = self.gd.zeros(dtype=self.dtype) self.basis_functions.lcao_to_grid(C_M, psit_G, kpt.q) return psit_G else: return C_M def load_lazily(self, hamiltonian, spos_ac): """Horrible hack to recalculate lcao coefficients after restart.""" self.basis_functions.set_positions(spos_ac) class LazyLoader: def __init__(self, hamiltonian, spos_ac): self.spos_ac = spos_ac def load(self, wfs): wfs.set_positions(self.spos_ac) # this sets rank_a # Now we need to pass wfs.rank_a or things to work # XXX WTF why does one have to fiddle with rank_a??? hamiltonian.set_positions(self.spos_ac, wfs.rank_a) wfs.eigensolver.iterate(hamiltonian, wfs) del wfs.lazyloader self.lazyloader = LazyLoader(hamiltonian, spos_ac) def write(self, writer, write_wave_functions=False): writer['Mode'] = 'lcao' if not write_wave_functions: return writer.dimension('nbasis', self.setups.nao) writer.add('WaveFunctionCoefficients', ('nspins', 'nibzkpts', 'nbands', 'nbasis'), dtype=self.dtype) for s in range(self.nspins): for k in range(self.kd.nibzkpts): C_nM = self.collect_array('C_nM', k, s) writer.fill(C_nM, s, k) def read_coefficients(self, reader): for kpt in self.kpt_u: kpt.C_nM = self.bd.empty(self.setups.nao, dtype=self.dtype) for myn, C_M in enumerate(kpt.C_nM): n = self.bd.global_index(myn) C_M[:] = reader.get('WaveFunctionCoefficients', kpt.s, kpt.k, n) def estimate_memory(self, mem): nq = len(self.kd.ibzk_qc) nao = self.setups.nao ni_total = sum([setup.ni for setup in self.setups]) itemsize = mem.itemsize[self.dtype] mem.subnode('C [qnM]', nq * self.bd.mynbands * nao * itemsize) nM1, nM2 = self.ksl.get_overlap_matrix_shape() mem.subnode('S, T [2 x qmm]', 2 * nq * nM1 * nM2 * itemsize) mem.subnode('P [aqMi]', nq * nao * ni_total // self.gd.comm.size) self.tci.estimate_memory(mem.subnode('TCI')) self.basis_functions.estimate_memory(mem.subnode('BasisFunctions')) self.eigensolver.estimate_memory(mem.subnode('Eigensolver'), self.dtype)