Example #1
0
    def __init__(self,
                 ksl,
                 gd,
                 nvalence,
                 setups,
                 bd,
                 dtype,
                 world,
                 kd,
                 kptband_comm,
                 timer,
                 atomic_hamiltonian=None):
        WaveFunctions.__init__(self, gd, nvalence, setups, bd, dtype, world,
                               kd, kptband_comm, timer)
        self.ksl = ksl
        self.S_qMM = None
        self.T_qMM = None
        self.P_aqMi = None

        if atomic_hamiltonian is None:
            if ksl.using_blacs:
                atomic_hamiltonian = 'distributed'
            else:
                atomic_hamiltonian = 'dense'
        if isinstance(atomic_hamiltonian, str):
            atomic_hamiltonian = get_atomic_hamiltonian(atomic_hamiltonian)
        self.atomic_hamiltonian = atomic_hamiltonian

        self.timer.start('TCI: Evaluate splines')
        self.tci = NewTCI(gd.cell_cv, gd.pbc_c, setups, kd.ibzk_qc, kd.gamma)
        self.timer.stop('TCI: Evaluate splines')

        self.basis_functions = BasisFunctions(
            gd, [setup.phit_j for setup in setups], kd, dtype=dtype, cut=True)
Example #2
0
 def __init__(self, ksl, gd, nvalence, setups, bd,
              dtype, world, kd, timer=None):
     WaveFunctions.__init__(self, gd, nvalence, setups, bd,
                            dtype, world, kd, timer)
     self.ksl = ksl
     self.S_qMM = None
     self.T_qMM = None
     self.P_aqMi = None
     
     self.timer.start('TCI: Evaluate splines')
     self.tci = NewTCI(gd.cell_cv, gd.pbc_c, setups, kd.ibzk_qc, kd.gamma)
     self.timer.stop('TCI: Evaluate splines')
     
     self.basis_functions = BasisFunctions(gd,
                                           [setup.phit_j
                                            for setup in setups],
                                           kd,
                                           cut=True)
Example #3
0
 def __init__(self, ksl, gd, nvalence, setups, bd,
              dtype, world, kd, timer=None):
     WaveFunctions.__init__(self, gd, nvalence, setups, bd,
                            dtype, world, kd, timer)
     self.ksl = ksl
     self.S_qMM = None
     self.T_qMM = None
     self.P_aqMi = None
     
     self.timer.start('TCI: Evaluate splines')
     self.tci = NewTCI(gd.cell_cv, gd.pbc_c, setups, kd.ibzk_qc, kd.gamma)
     self.timer.stop('TCI: Evaluate splines')
     
     self.basis_functions = BasisFunctions(gd,
                                           [setup.phit_j
                                            for setup in setups],
                                           kd.comm,
                                           cut=True)
     if not kd.gamma:
         self.basis_functions.set_k_points(kd.ibzk_qc)
Example #4
0
def get_lcao_projections_HSP(calc, bfs=None, spin=0, projectionsonly=True):
    """Some title.

    if projectionsonly is True, return the projections::

      V_qnM = <psi_qn | Phi_qM>

    else, also return the Hamiltonian, overlap, and projector overlaps::

      H_qMM  = <Phi_qM| H |Phi_qM'>
      S_qMM  = <Phi_qM|Phi_qM'>
      P_aqMi = <pt^a_qi|Phi_qM>
    """
    if calc.wfs.kpt_comm.size != 1:
        raise NotImplementedError('Parallelization over spin/kpt not '
                                  'implemented yet.')
    spos_ac = calc.atoms.get_scaled_positions() % 1.
    comm = calc.wfs.gd.comm
    nq = len(calc.wfs.ibzk_qc)
    Nk = calc.wfs.nibzkpts
    nao = calc.wfs.setups.nao
    dtype = calc.wfs.dtype
    if bfs is None:
        bfs = get_bfs(calc)
    tci = TwoCenterIntegrals(calc.wfs.gd.cell_cv,
                             calc.wfs.gd.pbc_c,
                             calc.wfs.setups,
                             calc.wfs.ibzk_qc,
                             calc.wfs.gamma)

    # Calculate projector overlaps, and (lower triangle of-) S and T matrices
    S_qMM = np.zeros((nq, nao, nao), dtype)
    T_qMM = np.zeros((nq, nao, nao), dtype)
    P_aqMi = {}

    for a in bfs.my_atom_indices:
        ni = calc.wfs.setups[a].ni
        P_aqMi[a] = np.zeros((nq, nao, ni), dtype)
    tci.calculate(spos_ac, S_qMM, T_qMM, P_aqMi)
    add_paw_correction_to_overlap(calc.wfs.setups, P_aqMi, S_qMM)
    calc.wfs.gd.comm.sum(S_qMM)
    calc.wfs.gd.comm.sum(T_qMM)
    
    
    # Calculate projections
    V_qnM = np.zeros((nq, calc.wfs.bd.nbands, nao), dtype)
    for kpt in calc.wfs.kpt_u:
        if kpt.s != spin:
            continue
        V_nM = V_qnM[kpt.q]
        #bfs.integrate2(kpt.psit_nG[:], V_nM, kpt.q) # all bands to save time
        for n, V_M in enumerate(V_nM): # band-by-band to save memory
            bfs.integrate2(kpt.psit_nG[n][:], V_M, kpt.q)
        for a, P_ni in kpt.P_ani.items():
            dS_ii = calc.wfs.setups[a].dO_ii
            P_Mi = P_aqMi[a][kpt.q]
            V_nM += np.dot(P_ni, np.inner(dS_ii, P_Mi).conj())
    comm.sum(V_qnM)
    if projectionsonly:
        return V_qnM

    # Determine potential matrix
    vt_G = calc.hamiltonian.vt_sG[spin]
    H_qMM = np.zeros((nq, nao, nao), dtype)
    for q, H_MM in enumerate(H_qMM):
        bfs.calculate_potential_matrix(vt_G, H_MM, q)

    # Make Hamiltonian as sum of kinetic (T) and potential (V) matrices
    # and add atomic corrections
    for a, P_qMi in P_aqMi.items():
        dH_ii = unpack(calc.hamiltonian.dH_asp[a][spin])
        for P_Mi, H_MM in zip(P_qMi, H_qMM):
            H_MM += np.dot(P_Mi, np.inner(dH_ii, P_Mi).conj())
    comm.sum(H_qMM)
    H_qMM += T_qMM
    
    # Fill in the upper triangles of H and S
    for H_MM, S_MM in zip(H_qMM, S_qMM):
        tri2full(H_MM)
        tri2full(S_MM)
    H_qMM *= Hartree

    return V_qnM, H_qMM, S_qMM, P_aqMi
def get_lcao_projections_HSP(calc, bfs=None, spin=0, projectionsonly=True):
    """Some title.

    if projectionsonly is True, return the projections::

      V_qnM = <psi_qn | Phi_qM>

    else, also return the Hamiltonian, overlap, and projector overlaps::

      H_qMM  = <Phi_qM| H |Phi_qM'>
      S_qMM  = <Phi_qM|Phi_qM'>
      P_aqMi = <pt^a_qi|Phi_qM>
    """
    if calc.wfs.kd.comm.size != 1:
        raise NotImplementedError('Parallelization over spin/kpt not '
                                  'implemented yet.')
    spos_ac = calc.atoms.get_scaled_positions() % 1.
    comm = calc.wfs.gd.comm
    nq = len(calc.wfs.kd.ibzk_qc)
    Nk = calc.wfs.kd.nibzkpts
    nao = calc.wfs.setups.nao
    dtype = calc.wfs.dtype
    if bfs is None:
        bfs = get_bfs(calc)
    tci = TwoCenterIntegrals(calc.wfs.gd.cell_cv, calc.wfs.gd.pbc_c,
                             calc.wfs.setups, calc.wfs.kd.ibzk_qc,
                             calc.wfs.kd.gamma)

    # Calculate projector overlaps, and (lower triangle of-) S and T matrices
    S_qMM = np.zeros((nq, nao, nao), dtype)
    T_qMM = np.zeros((nq, nao, nao), dtype)
    P_aqMi = {}

    for a in bfs.my_atom_indices:
        ni = calc.wfs.setups[a].ni
        P_aqMi[a] = np.zeros((nq, nao, ni), dtype)
    tci.calculate(spos_ac, S_qMM, T_qMM, P_aqMi)
    add_paw_correction_to_overlap(calc.wfs.setups, P_aqMi, S_qMM)
    calc.wfs.gd.comm.sum(S_qMM)
    calc.wfs.gd.comm.sum(T_qMM)

    # Calculate projections
    V_qnM = np.zeros((nq, calc.wfs.bd.nbands, nao), dtype)
    for kpt in calc.wfs.kpt_u:
        if kpt.s != spin:
            continue
        V_nM = V_qnM[kpt.q]
        #bfs.integrate2(kpt.psit_nG[:], V_nM, kpt.q) # all bands to save time
        for n, V_M in enumerate(V_nM):  # band-by-band to save memory
            bfs.integrate2(kpt.psit_nG[n][:], V_M, kpt.q)
        for a, P_ni in kpt.P_ani.items():
            dS_ii = calc.wfs.setups[a].dO_ii
            P_Mi = P_aqMi[a][kpt.q]
            V_nM += np.dot(P_ni, np.inner(dS_ii, P_Mi).conj())
    comm.sum(V_qnM)
    if projectionsonly:
        return V_qnM

    # Determine potential matrix
    vt_G = calc.hamiltonian.vt_sG[spin]
    H_qMM = np.zeros((nq, nao, nao), dtype)
    for q, H_MM in enumerate(H_qMM):
        bfs.calculate_potential_matrix(vt_G, H_MM, q)

    # Make Hamiltonian as sum of kinetic (T) and potential (V) matrices
    # and add atomic corrections
    for a, P_qMi in P_aqMi.items():
        dH_ii = unpack(calc.hamiltonian.dH_asp[a][spin])
        for P_Mi, H_MM in zip(P_qMi, H_qMM):
            H_MM += np.dot(P_Mi, np.inner(dH_ii, P_Mi).conj())
    comm.sum(H_qMM)
    H_qMM += T_qMM

    # Fill in the upper triangles of H and S
    for H_MM, S_MM in zip(H_qMM, S_qMM):
        tri2full(H_MM)
        tri2full(S_MM)
    H_qMM *= Hartree

    return V_qnM, H_qMM, S_qMM, P_aqMi
Example #6
0
class LCAOWaveFunctions(WaveFunctions):
    def __init__(self, ksl, gd, nvalence, setups, bd,
                 dtype, world, kd, timer=None):
        WaveFunctions.__init__(self, gd, nvalence, setups, bd,
                               dtype, world, kd, timer)
        self.ksl = ksl
        self.S_qMM = None
        self.T_qMM = None
        self.P_aqMi = None
        
        self.timer.start('TCI: Evaluate splines')
        self.tci = NewTCI(gd.cell_cv, gd.pbc_c, setups, kd.ibzk_qc, kd.gamma)
        self.timer.stop('TCI: Evaluate splines')
        
        self.basis_functions = BasisFunctions(gd,
                                              [setup.phit_j
                                               for setup in setups],
                                              kd,
                                              cut=True)

    def empty(self, n=(), global_array=False, realspace=False):
        if realspace:
            return self.gd.empty(n, self.dtype, global_array)
        else:
            if isinstance(n, int):
                n = (n,)
            nao = self.setups.nao
            return np.empty(n + (nao,), self.dtype)

    def summary(self, fd):
        fd.write('Wave functions: LCAO\n')
        
    def set_eigensolver(self, eigensolver):
        WaveFunctions.set_eigensolver(self, eigensolver)
        eigensolver.initialize(self.gd, self.dtype, self.setups.nao, self.ksl)

    def set_positions(self, spos_ac):
        self.timer.start('Basic WFS set positions')
        WaveFunctions.set_positions(self, spos_ac)
        self.timer.stop('Basic WFS set positions')
        self.timer.start('Basis functions set positions')
        self.basis_functions.set_positions(spos_ac)
        self.timer.stop('Basis functions set positions')
        if self.ksl is not None:
            self.basis_functions.set_matrix_distribution(self.ksl.Mstart,
                                                         self.ksl.Mstop)

        nq = len(self.kd.ibzk_qc)
        nao = self.setups.nao
        mynbands = self.bd.mynbands
        
        Mstop = self.ksl.Mstop
        Mstart = self.ksl.Mstart
        mynao = Mstop - Mstart

        if self.ksl.using_blacs: # XXX
            # S and T have been distributed to a layout with blacs, so
            # discard them to force reallocation from scratch.
            #
            # TODO: evaluate S and T when they *are* distributed, thus saving
            # memory and avoiding this problem
            self.S_qMM = None
            self.T_qMM = None
        
        S_qMM = self.S_qMM
        T_qMM = self.T_qMM
        
        if S_qMM is None: # XXX
            # First time:
            assert T_qMM is None
            if self.ksl.using_blacs: # XXX
                self.tci.set_matrix_distribution(Mstart, mynao)
                
            S_qMM = np.empty((nq, mynao, nao), self.dtype)
            T_qMM = np.empty((nq, mynao, nao), self.dtype)
        
        for kpt in self.kpt_u:
            if kpt.C_nM is None:
                kpt.C_nM = np.empty((mynbands, nao), self.dtype)

        self.allocate_arrays_for_projections(
            self.basis_functions.my_atom_indices)
            
        self.P_aqMi = {}
        for a in self.basis_functions.my_atom_indices:
            ni = self.setups[a].ni
            self.P_aqMi[a] = np.empty((nq, nao, ni), self.dtype)

        for kpt in self.kpt_u:
            q = kpt.q
            kpt.P_aMi = dict([(a, P_qMi[q])
                              for a, P_qMi in self.P_aqMi.items()])

        self.timer.start('TCI: Calculate S, T, P')
        # Calculate lower triangle of S and T matrices:
        self.tci.calculate(spos_ac, S_qMM, T_qMM, self.P_aqMi)
        add_paw_correction_to_overlap(self.setups, self.P_aqMi, S_qMM,
                                      self.ksl.Mstart, self.ksl.Mstop)
        self.timer.stop('TCI: Calculate S, T, P')

        S_MM = None # allow garbage collection of old S_qMM after redist
        S_qMM = self.ksl.distribute_overlap_matrix(S_qMM)
        T_qMM = self.ksl.distribute_overlap_matrix(T_qMM)

        for kpt in self.kpt_u:
            q = kpt.q
            kpt.S_MM = S_qMM[q]
            kpt.T_MM = T_qMM[q]

        if (debug and self.band_comm.size == 1 and self.gd.comm.rank == 0 and
            nao > 0 and not self.ksl.using_blacs):
            # S and T are summed only on comm master, so check only there
            from numpy.linalg import eigvalsh
            self.timer.start('Check positive definiteness')
            for S_MM in S_qMM:
                tri2full(S_MM, UL='L')
                smin = eigvalsh(S_MM).real.min()
                if smin < 0:
                    raise RuntimeError('Overlap matrix has negative '
                                       'eigenvalue: %e' % smin)
            self.timer.stop('Check positive definiteness')
        self.positions_set = True
        self.S_qMM = S_qMM
        self.T_qMM = T_qMM

    def initialize(self, density, hamiltonian, spos_ac):
        if density.nt_sG is None:
            if self.kpt_u[0].f_n is None or self.kpt_u[0].C_nM is None:
                density.initialize_from_atomic_densities(self.basis_functions)
                # Initialize GLLB-potential from basis function orbitals
                if hamiltonian.xc.type == 'GLLB':
                    hamiltonian.xc.initialize_from_atomic_orbitals(self.basis_functions)
            else:
                # We have the info we need for a density matrix, so initialize
                # from that instead of from scratch.  This will be the case
                # after set_positions() during a relaxation
                density.initialize_from_wavefunctions(self)
        else:
            # After a restart, nt_sg doesn't exist yet, so we'll have to
            # make sure it does.  Of course, this should have been taken care
            # of already by this time, so we should improve the code elsewhere
            density.calculate_normalized_charges_and_mix()
        hamiltonian.update(density)
    
    def initialize_wave_functions_from_lcao(self):
        """
        Fill the calc.wfs.kpt_[u].psit_nG arrays with usefull data.
        
        Normally psit_nG is NOT used in lcao mode, but some extensions
        (like ase.dft.wannier) want to have it.
        This code is adapted from fd.py / initialize_from_lcao_coefficients()
        and fills psit_nG with data constructed from the current lcao
        coefficients (kpt.C_nM).
        
        (This may or may not work in band-parallel case!)
        """
        #print('initialize_wave_functions_from_lcao')
        bfs = self.basis_functions
        for kpt in self.kpt_u:
            #print("kpt: {0}".format(kpt))
            kpt.psit_nG = self.gd.zeros(self.bd.nbands, self.dtype)
            bfs.lcao_to_grid(kpt.C_nM, kpt.psit_nG[:self.bd.mynbands], kpt.q)
            # kpt.C_nM = None
    #
    def initialize_wave_functions_from_restart_file(self):
        """Dummy function to ensure compatibility to fd mode"""
        self.initialize_wave_functions_from_lcao()
    #
    
    def calculate_density_matrix(self, f_n, C_nM, rho_MM=None):
        # ATLAS can't handle uninitialized output array:
        #rho_MM.fill(42)

        self.timer.start('Calculate density matrix')
        rho_MM = self.ksl.calculate_density_matrix(f_n, C_nM, rho_MM)
        self.timer.stop('Calculate density matrix')
        return rho_MM

        # ----------------------------
        if 1:
            # XXX Should not conjugate, but call gemm(..., 'c')
            # Although that requires knowing C_Mn and not C_nM.
            # that also conforms better to the usual conventions in literature
            Cf_Mn = C_nM.T.conj() * f_n
            self.timer.start('gemm')
            gemm(1.0, C_nM, Cf_Mn, 0.0, rho_MM, 'n')
            self.timer.stop('gemm')
            self.timer.start('band comm sum')
            self.bd.comm.sum(rho_MM)
            self.timer.stop('band comm sum')
        else:
            # Alternative suggestion. Might be faster. Someone should test this
            from gpaw.utilities.blas import r2k
            C_Mn = C_nM.T.copy()
            r2k(0.5, C_Mn, f_n * C_Mn, 0.0, rho_MM)
            tri2full(rho_MM)

    def calculate_density_matrix_delta(self, d_nn, C_nM, rho_MM=None):
        # ATLAS can't handle uninitialized output array:
        #rho_MM.fill(42)

        self.timer.start('Calculate density matrix')
        rho_MM = self.ksl.calculate_density_matrix_delta(d_nn, C_nM, rho_MM)
        self.timer.stop('Calculate density matrix')
        return rho_MM

    def add_to_density_from_k_point_with_occupation(self, nt_sG, kpt, f_n):
        """Add contribution to pseudo electron-density. Do not use the standard
        occupation numbers, but ones given with argument f_n."""
        # Custom occupations are used in calculation of response potential
        # with GLLB-potential
        if kpt.rho_MM is None:
            rho_MM = self.calculate_density_matrix(f_n, kpt.C_nM)
            if hasattr(kpt, 'c_on'):
                assert self.bd.comm.size == 1
                d_nn = np.zeros((self.bd.mynbands, self.bd.mynbands),
                                dtype=kpt.C_nM.dtype)
                for ne, c_n in zip(kpt.ne_o, kpt.c_on):
                    assert abs(c_n.imag).max() < 1e-14
                    d_nn += ne * np.outer(c_n.conj(), c_n).real
                rho_MM += self.calculate_density_matrix_delta(d_nn, kpt.C_nM)
        else:
            rho_MM = kpt.rho_MM
        self.timer.start('Construct density')
        self.basis_functions.construct_density(rho_MM, nt_sG[kpt.s], kpt.q)
        self.timer.stop('Construct density')

    def add_to_kinetic_density_from_k_point(self, taut_G, kpt):
        raise NotImplementedError('Kinetic density calculation for LCAO '
                                  'wavefunctions is not implemented.')

    def calculate_forces(self, hamiltonian, F_av):
        self.timer.start('LCAO forces')

        spos_ac = self.tci.atoms.get_scaled_positions() % 1.0
        ksl = self.ksl
        nao = ksl.nao
        mynao = ksl.mynao
        nq = len(self.kd.ibzk_qc)
        dtype = self.dtype
        tci = self.tci
        gd = self.gd
        bfs = self.basis_functions
        
        Mstart = ksl.Mstart
        Mstop = ksl.Mstop

        from gpaw.kohnsham_layouts import BlacsOrbitalLayouts
        isblacs = isinstance(ksl, BlacsOrbitalLayouts) # XXX
        
        if not isblacs:
            self.timer.start('TCI derivative')
            dThetadR_qvMM = np.empty((nq, 3, mynao, nao), dtype)
            dTdR_qvMM = np.empty((nq, 3, mynao, nao), dtype)
            dPdR_aqvMi = {}
            for a in self.basis_functions.my_atom_indices:
                ni = self.setups[a].ni
                dPdR_aqvMi[a] = np.empty((nq, 3, nao, ni), dtype)
            tci.calculate_derivative(spos_ac, dThetadR_qvMM, dTdR_qvMM,
                                     dPdR_aqvMi)
            gd.comm.sum(dThetadR_qvMM)
            gd.comm.sum(dTdR_qvMM)
            self.timer.stop('TCI derivative')
        
            my_atom_indices = bfs.my_atom_indices
            atom_indices = bfs.atom_indices

            def _slices(indices):
                for a in indices:
                    M1 = bfs.M_a[a] - Mstart
                    M2 = M1 + self.setups[a].nao
                    if M2 > 0:
                        yield a, max(0, M1), M2

            def slices():
                return _slices(atom_indices)

            def my_slices():
                return _slices(my_atom_indices)
        
        #
        #         -----                    -----
        #          \    -1                  \    *
        # E      =  )  S     H    rho     =  )  c     eps  f  c
        #  mu nu   /    mu x  x z    z nu   /    n mu    n  n  n nu
        #         -----                    -----
        #          x z                       n
        #
        # We use the transpose of that matrix.  The first form is used
        # if rho is given, otherwise the coefficients are used.
        self.timer.start('Initial')


        rhoT_uMM = []
        ET_uMM = []

        if not isblacs:
            if self.kpt_u[0].rho_MM is None:
                self.timer.start('Get density matrix')
                for kpt in self.kpt_u:
                    rhoT_MM = ksl.get_transposed_density_matrix(kpt.f_n,
                                                                kpt.C_nM)
                    rhoT_uMM.append(rhoT_MM)
                    ET_MM = ksl.get_transposed_density_matrix(kpt.f_n
                                                              * kpt.eps_n,
                                                              kpt.C_nM)
                    ET_uMM.append(ET_MM)

                    if hasattr(kpt, 'c_on'):
                        # XXX does this work with BLACS/non-BLACS/etc.?
                        assert self.bd.comm.size == 1
                        d_nn = np.zeros((self.bd.mynbands, self.bd.mynbands), dtype=kpt.C_nM.dtype)
                        for ne, c_n in zip(kpt.ne_o, kpt.c_on):
                                d_nn += ne * np.outer(c_n.conj(), c_n)
                        rhoT_MM += ksl.get_transposed_density_matrix_delta(d_nn, kpt.C_nM)
                        ET_MM += ksl.get_transposed_density_matrix_delta(d_nn * kpt.eps_n, kpt.C_nM)
                self.timer.stop('Get density matrix')
            else:
                rhoT_uMM = []
                ET_uMM = []
                for kpt in self.kpt_u:
                    H_MM = self.eigensolver.calculate_hamiltonian_matrix(hamiltonian, self, kpt)
                    tri2full(H_MM)
                    S_MM = kpt.S_MM.copy()
                    tri2full(S_MM)
                    ET_MM = np.linalg.solve(S_MM, gemmdot(H_MM,
                                                          kpt.rho_MM)).T.copy()
                    del S_MM, H_MM
                    rhoT_MM = kpt.rho_MM.T.copy()
                    rhoT_uMM.append(rhoT_MM)
                    ET_uMM.append(ET_MM)
        self.timer.stop('Initial')

        if isblacs: # XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
            from gpaw.blacs import BlacsGrid, Redistributor
            
            def get_density_matrix(f_n, C_nM, redistributor):
                rho1_mm = ksl.calculate_blocked_density_matrix(f_n,
                                                               C_nM).conj()
                rho_mm = redistributor.redistribute(rho1_mm)
                return rho_mm
            
            pcutoff_a = [max([pt.get_cutoff() for pt in setup.pt_j])
                         for setup in self.setups]
            phicutoff_a = [max([phit.get_cutoff() for phit in setup.phit_j])
                           for setup in self.setups]
            
            # XXX should probably use bdsize x gdsize instead
            # That would be consistent with some existing grids
            grid = BlacsGrid(ksl.block_comm, self.gd.comm.size,
                             self.bd.comm.size)
            
            blocksize1 = -(-nao // grid.nprow)
            blocksize2 = -(-nao // grid.npcol)
            # XXX what are rows and columns actually?
            desc = grid.new_descriptor(nao, nao, blocksize1, blocksize2)
            
            rhoT_umm = []
            ET_umm = []
            redistributor = Redistributor(grid.comm, ksl.mmdescriptor, desc)
            Fpot_av = np.zeros_like(F_av)
            for u, kpt in enumerate(self.kpt_u):
                self.timer.start('Get density matrix')
                rhoT_mm = get_density_matrix(kpt.f_n, kpt.C_nM, redistributor)
                rhoT_umm.append(rhoT_mm)
                self.timer.stop('Get density matrix')
                
                self.timer.start('Potential')
                rhoT_mM = ksl.distribute_to_columns(rhoT_mm, desc)
                
                vt_G = hamiltonian.vt_sG[kpt.s]
                Fpot_av += bfs.calculate_force_contribution(vt_G, rhoT_mM,
                                                            kpt.q)
                del rhoT_mM
                self.timer.stop('Potential')
            
            self.timer.start('Get density matrix')
            for kpt in self.kpt_u:
                ET_mm = get_density_matrix(kpt.f_n * kpt.eps_n, kpt.C_nM,
                                           redistributor)
                ET_umm.append(ET_mm)
            self.timer.stop('Get density matrix')
            
            M1start = blocksize1 * grid.myrow
            M2start = blocksize2 * grid.mycol
            
            M1stop = min(M1start + blocksize1, nao)
            M2stop = min(M2start + blocksize2, nao)
            
            m1max = M1stop - M1start
            m2max = M2stop - M2start


        
        if not isblacs:
            # Kinetic energy contribution
            #
            #           ----- d T
            #  a         \       mu nu
            # F += 2 Re   )   -------- rho
            #            /    d R         nu mu
            #           -----    mu nu
            #        mu in a; nu
            #
            Fkin_av = np.zeros_like(F_av)
            for u, kpt in enumerate(self.kpt_u):
                dEdTrhoT_vMM = (dTdR_qvMM[kpt.q]
                                * rhoT_uMM[u][np.newaxis]).real
                for a, M1, M2 in my_slices():
                    Fkin_av[a, :] += 2.0 * dEdTrhoT_vMM[:, M1:M2].sum(-1).sum(-1)
            del dEdTrhoT_vMM


            # Density matrix contribution due to basis overlap
            #
            #            ----- d Theta
            #  a          \           mu nu
            # F  += -2 Re  )   ------------  E
            #             /        d R        nu mu
            #            -----        mu nu
            #         mu in a; nu
            #
            Ftheta_av = np.zeros_like(F_av)
            for u, kpt in enumerate(self.kpt_u):
                dThetadRE_vMM = (dThetadR_qvMM[kpt.q]
                                 * ET_uMM[u][np.newaxis]).real
                for a, M1, M2 in my_slices():
                    Ftheta_av[a, :] += -2.0 * dThetadRE_vMM[:, M1:M2].sum(-1).sum(-1)
            del dThetadRE_vMM

        if isblacs:
            from gpaw.lcao.overlap import TwoCenterIntegralCalculator
            self.timer.start('Prepare TCI loop')
            M_a = bfs.M_a
            
            Fkin2_av = np.zeros_like(F_av)
            Ftheta2_av = np.zeros_like(F_av)

            cell_cv = tci.atoms.cell
            spos_ac = tci.atoms.get_scaled_positions() % 1.0

            overlapcalc = TwoCenterIntegralCalculator(self.kd.ibzk_qc,
                                                      derivative=False)

            def get_phases(offset):
                return overlapcalc.phaseclass(overlapcalc.ibzk_qc, offset)

            # XXX this is not parallel *AT ALL*.
            self.timer.start('Get neighbors')
            nl = tci.atompairs.pairs.neighbors
            r_and_offset_aao = get_r_and_offsets(nl, spos_ac, cell_cv)
            atompairs = r_and_offset_aao.keys()
            atompairs.sort()
            self.timer.stop('Get neighbors')

            T_expansions = tci.T_expansions
            Theta_expansions = tci.Theta_expansions
            P_expansions = tci.P_expansions
            nq = len(self.ibzk_qc)
            
            dH_asp = hamiltonian.dH_asp

            self.timer.start('broadcast dH')
            alldH_asp = {}
            for a in range(len(self.setups)):
                gdrank = bfs.sphere_a[a].rank
                if gdrank == gd.rank:
                    dH_sp = dH_asp[a]
                else:
                    ni = self.setups[a].ni
                    dH_sp = np.empty((self.nspins, ni * (ni + 1) // 2))
                gd.comm.broadcast(dH_sp, gdrank)
                # okay, now everyone gets copies of dH_sp
                alldH_asp[a] = dH_sp
            self.timer.stop('broadcast dH')
            

            # This will get sort of hairy.  We need to account for some
            # three-center overlaps, such as:
            #
            #         a1
            #      Phi   ~a3    a3  ~a3     a2     a2,a1
            #   < ----  |p  > dH   <p   |Phi  > rho
            #      dR
            #
            # To this end we will loop over all pairs of atoms (a1, a3),
            # and then a sub-loop over (a3, a2).
            from gpaw.lcao.overlap import DerivativeAtomicDisplacement
            class Displacement(DerivativeAtomicDisplacement):
                def __init__(self, a1, a2, R_c, offset):
                    phases = overlapcalc.phaseclass(overlapcalc.ibzk_qc,
                                                    offset)
                    DerivativeAtomicDisplacement.__init__(self, None, a1, a2,
                                                          R_c, offset, phases)

            # Cache of Displacement objects with spherical harmonics with
            # evaluated spherical harmonics.
            disp_aao = {}

            def get_displacements(a1, a2, maxdistance):
                # XXX the way maxdistance is handled it can lead to
                # bad caching when different maxdistances are passed
                # to subsequent calls with same pair of atoms
                disp_o = disp_aao.get((a1, a2))
                if disp_o is None:
                    disp_o = []
                    for r, offset in r_and_offset_aao[(a1, a2)]:
                        if np.linalg.norm(r) > maxdistance:
                            continue
                        disp = Displacement(a1, a2, r, offset)
                        disp_o.append(disp)
                    disp_aao[(a1, a2)] = disp_o
                return [disp for disp in disp_o if disp.r < maxdistance]
                
            self.timer.stop('Prepare TCI loop')
            self.timer.start('Not so complicated loop')


            for (a1, a2) in atompairs:
                if a1 >= a2:
                    # Actually this leads to bad load balance.
                    # We should take a1 > a2 or a1 < a2 equally many times.
                    # Maybe decide which of these choices
                    # depending on whether a2 % 1 == 0
                    continue
                
                m1start = M_a[a1] - M1start
                m2start = M_a[a2] - M2start
                if m1start >= blocksize1 or m2start >= blocksize2:
                    continue

                T_expansion = T_expansions.get(a1, a2)
                Theta_expansion = Theta_expansions.get(a1, a2)
                P_expansion = P_expansions.get(a1, a2)
                nm1, nm2 = T_expansion.shape

                m1stop = min(m1start + nm1, m1max)
                m2stop = min(m2start + nm2, m2max)

                if m1stop <= 0 or m2stop <= 0:
                    continue

                m1start = max(m1start, 0)
                m2start = max(m2start, 0)
                J1start = max(0, M1start - M_a[a1])
                J2start = max(0, M2start - M_a[a2])
                M1stop = J1start + m1stop - m1start
                J2stop = J2start + m2stop - m2start

                dTdR_qvmm = T_expansion.zeros((nq, 3), dtype=dtype)
                dThetadR_qvmm = Theta_expansion.zeros((nq, 3), dtype=dtype)

                disp_o = get_displacements(a1, a2,
                                           phicutoff_a[a1] + phicutoff_a[a2])
                for disp in disp_o:
                    disp.evaluate_overlap(T_expansion, dTdR_qvmm)
                    disp.evaluate_overlap(Theta_expansion, dThetadR_qvmm)

                for u, kpt in enumerate(self.kpt_u):
                    rhoT_mm = rhoT_umm[u][m1start:m1stop, m2start:m2stop]
                    ET_mm = ET_umm[u][m1start:m1stop, m2start:m2stop]
                    Fkin_v = 2.0 * (dTdR_qvmm[kpt.q][:, J1start:M1stop,
                                                     J2start:J2stop]
                                    * rhoT_mm[np.newaxis]).real.sum(-1).sum(-1)
                    Ftheta_v = 2.0 * (dThetadR_qvmm[kpt.q][:, J1start:M1stop,
                                                           J2start:J2stop]
                                      * ET_mm[np.newaxis]).real.sum(-1).sum(-1)
                    Fkin2_av[a1] += Fkin_v
                    Fkin2_av[a2] -= Fkin_v
                    Ftheta2_av[a1] -= Ftheta_v
                    Ftheta2_av[a2] += Ftheta_v

            Fkin_av = Fkin2_av
            Ftheta_av = Ftheta2_av
            self.timer.stop('Not so complicated loop')

            dHP_and_dSP_aauim = {}

            a2values = {}
            for (a2, a3) in atompairs:
                if not a3 in a2values:
                    a2values[a3] = []
                a2values[a3].append(a2)
            
            Fatom_av = np.zeros_like(F_av)
            Frho_av = np.zeros_like(F_av)
            self.timer.start('Complicated loop')
            for a1, a3 in atompairs:
                if a1 == a3:
                    continue
                
                m1start = M_a[a1] - M1start
                if m1start >= blocksize1:
                    continue
                
                P_expansion = P_expansions.get(a1, a3)
                nm1 = P_expansion.shape[0]
                m1stop = min(m1start + nm1, m1max)
                if m1stop <= 0:
                    continue

                m1start = max(m1start, 0)
                J1start = max(0, M1start - M_a[a1])
                J1stop = J1start + m1stop - m1start

                disp_o = get_displacements(a1, a3,
                                           phicutoff_a[a1] + pcutoff_a[a3])
                if len(disp_o) == 0:
                    continue
                
                dPdR_qvmi = P_expansion.zeros((nq, 3), dtype=dtype)
                for disp in disp_o:
                    disp.evaluate_overlap(P_expansion, dPdR_qvmi)

                dPdR_qvmi = dPdR_qvmi[:, :, J1start:J1stop, :].copy()
                for a2 in a2values[a3]:
                    m2start = M_a[a2] - M2start
                    if m2start >= blocksize2:
                        continue

                    P_expansion2 = P_expansions.get(a2, a3)
                    nm2 = P_expansion2.shape[0]
                    m2stop = min(m2start + nm2, m2max)
                    if m2stop <= 0:
                        continue
                    
                    disp_o = get_displacements(a2, a3,
                                               phicutoff_a[a2] + pcutoff_a[a3])
                    if len(disp_o) == 0:
                        continue

                    m2start = max(m2start, 0)
                    J2start = max(0, M2start - M_a[a2])
                    J2stop = J2start + m2stop - m2start

                    if (a2, a3) in dHP_and_dSP_aauim:
                        dHP_uim, dSP_uim = dHP_and_dSP_aauim[(a2, a3)]
                    else:
                        P_qmi = P_expansion2.zeros((nq,), dtype=dtype)
                        for disp in disp_o:
                            disp.evaluate_direct(P_expansion2, P_qmi)
                        P_qmi = P_qmi[:, J2start:J2stop].copy()
                        dH_sp = alldH_asp[a3]
                        dS_ii = self.setups[a3].dO_ii
                        
                        dHP_uim = []
                        dSP_uim = []
                        for u, kpt in enumerate(self.kpt_u):
                            dH_ii = unpack(dH_sp[kpt.s])
                            dHP_im = np.dot(P_qmi[kpt.q], dH_ii).T.conj()
                            # XXX only need nq of these
                            dSP_im = np.dot(P_qmi[kpt.q], dS_ii).T.conj()
                            dHP_uim.append(dHP_im)
                            dSP_uim.append(dSP_im)
                            dHP_and_dSP_aauim[(a2, a3)] = dHP_uim, dSP_uim
                    
                    for u, kpt in enumerate(self.kpt_u):
                        rhoT_mm = rhoT_umm[u][m1start:m1stop, m2start:m2stop]
                        ET_mm = ET_umm[u][m1start:m1stop, m2start:m2stop]
                        dPdRdHP_vmm = np.dot(dPdR_qvmi[kpt.q], dHP_uim[u])
                        dPdRdSP_vmm = np.dot(dPdR_qvmi[kpt.q], dSP_uim[u])
                        
                        Fatom_c = 2.0 * (dPdRdHP_vmm
                                         * rhoT_mm).real.sum(-1).sum(-1)
                        Frho_c = 2.0 * (dPdRdSP_vmm
                                        * ET_mm).real.sum(-1).sum(-1)
                        Fatom_av[a1] += Fatom_c
                        Fatom_av[a3] -= Fatom_c

                        Frho_av[a1] -= Frho_c
                        Frho_av[a3] += Frho_c
                        
            self.timer.stop('Complicated loop')
        
        if not isblacs:
            # Potential contribution
            #
            #           -----      /  d Phi  (r)
            #  a         \        |        mu    ~
            # F += -2 Re  )       |   ---------- v (r)  Phi  (r) dr rho
            #            /        |     d R                nu          nu mu
            #           -----    /         a
            #        mu in a; nu
            #
            self.timer.start('Potential')
            Fpot_av = np.zeros_like(F_av)
            for u, kpt in enumerate(self.kpt_u):
                vt_G = hamiltonian.vt_sG[kpt.s]
                Fpot_av += bfs.calculate_force_contribution(vt_G, rhoT_uMM[u],
                                                            kpt.q)
            self.timer.stop('Potential')

            # Density matrix contribution from PAW correction
            #
            #           -----                        -----
            #  a         \      a                     \     b
            # F +=  2 Re  )    Z      E        - 2 Re  )   Z      E
            #            /      mu nu  nu mu          /     mu nu  nu mu
            #           -----                        -----
            #           mu nu                    b; mu in a; nu
            #
            # with
            #                  b*
            #         -----  dP
            #   b      \       i mu    b   b
            #  Z     =  )   -------- dS   P
            #   mu nu  /     dR        ij  j nu
            #         -----    b mu
            #           ij
            #
            self.timer.start('Paw correction')
            Frho_av = np.zeros_like(F_av)
            for u, kpt in enumerate(self.kpt_u):
                work_MM = np.zeros((mynao, nao), dtype)
                ZE_MM = None
                for b in my_atom_indices:
                    setup = self.setups[b]
                    dO_ii = np.asarray(setup.dO_ii, dtype)
                    dOP_iM = np.zeros((setup.ni, nao), dtype)
                    gemm(1.0, self.P_aqMi[b][kpt.q], dO_ii, 0.0, dOP_iM, 'c')
                    for v in range(3):
                        gemm(1.0, dOP_iM, dPdR_aqvMi[b][kpt.q][v][Mstart:Mstop],
                             0.0, work_MM, 'n')
                        ZE_MM = (work_MM * ET_uMM[u]).real
                        for a, M1, M2 in slices():
                            dE = 2 * ZE_MM[M1:M2].sum()
                            Frho_av[a, v] -= dE # the "b; mu in a; nu" term
                            Frho_av[b, v] += dE # the "mu nu" term
            del work_MM, ZE_MM
            self.timer.stop('Paw correction')

            # Atomic density contribution
            #            -----                         -----
            #  a          \     a                       \     b
            # F  += -2 Re  )   A      rho       + 2 Re   )   A      rho
            #             /     mu nu    nu mu          /     mu nu    nu mu
            #            -----                         -----
            #            mu nu                     b; mu in a; nu
            #
            #                  b*
            #         ----- d P
            #  b       \       i mu   b   b
            # A     =   )   ------- dH   P
            #  mu nu   /    d R       ij  j nu
            #         -----    b mu
            #           ij
            #
            self.timer.start('Atomic Hamiltonian force')
            Fatom_av = np.zeros_like(F_av)
            for u, kpt in enumerate(self.kpt_u):
                for b in my_atom_indices:
                    H_ii = np.asarray(unpack(hamiltonian.dH_asp[b][kpt.s]), dtype)
                    HP_iM = gemmdot(H_ii,
                                    np.ascontiguousarray(self.P_aqMi[b][kpt.q].T.conj()))
                    for v in range(3):
                        dPdR_Mi = dPdR_aqvMi[b][kpt.q][v][Mstart:Mstop]
                        ArhoT_MM = (gemmdot(dPdR_Mi, HP_iM) * rhoT_uMM[u]).real
                        for a, M1, M2 in slices():
                            dE = 2 * ArhoT_MM[M1:M2].sum()
                            Fatom_av[a, v] += dE # the "b; mu in a; nu" term
                            Fatom_av[b, v] -= dE # the "mu nu" term
            self.timer.stop('Atomic Hamiltonian force')

        F_av += Fkin_av + Fpot_av + Ftheta_av + Frho_av + Fatom_av
        self.timer.start('Wait for sum')
        ksl.orbital_comm.sum(F_av)
        if self.bd.comm.rank == 0:
            self.kpt_comm.sum(F_av, 0)
        self.timer.stop('Wait for sum')
        self.timer.stop('LCAO forces')

    def _get_wave_function_array(self, u, n, realspace=True):
        kpt = self.kpt_u[u]
        if kpt.C_nM is None:
            # Hack to make sure things are available after restart
            self.lazyloader.load(self)
        
        C_M = kpt.C_nM[n]

        if realspace:
            psit_G = self.gd.zeros(dtype=self.dtype)
            self.basis_functions.lcao_to_grid(C_M, psit_G, kpt.q)
            return psit_G
        else:
            return C_M

    def load_lazily(self, hamiltonian, spos_ac):
        """Horrible hack to recalculate lcao coefficients after restart."""
        self.basis_functions.set_positions(spos_ac)
        class LazyLoader:
            def __init__(self, hamiltonian, spos_ac):
                self.spos_ac = spos_ac
            
            def load(self, wfs):
                wfs.set_positions(self.spos_ac) # this sets rank_a
                # Now we need to pass wfs.rank_a or things to work
                # XXX WTF why does one have to fiddle with rank_a???
                hamiltonian.set_positions(self.spos_ac, wfs.rank_a)
                wfs.eigensolver.iterate(hamiltonian, wfs)
                del wfs.lazyloader
        
        self.lazyloader = LazyLoader(hamiltonian, spos_ac)
        
    def write(self, writer, write_wave_functions=False):
        writer['Mode'] = 'lcao'
        
        if not write_wave_functions:
            return
   
        writer.dimension('nbasis', self.setups.nao)
        writer.add('WaveFunctionCoefficients',
                   ('nspins', 'nibzkpts', 'nbands', 'nbasis'),
                   dtype=self.dtype)

        for s in range(self.nspins):
            for k in range(self.nibzkpts):
                C_nM = self.collect_array('C_nM', k, s)
                writer.fill(C_nM, s, k)

    def read_coefficients(self, reader):
        for kpt in self.kpt_u:
            kpt.C_nM = self.bd.empty(self.setups.nao, dtype=self.dtype)
            for myn, C_M in enumerate(kpt.C_nM):
                n = self.bd.global_index(myn)
                C_M[:] = reader.get('WaveFunctionCoefficients',
                                         kpt.s, kpt.k, n)

    def estimate_memory(self, mem):
        nq = len(self.kd.ibzk_qc)
        nao = self.setups.nao
        ni_total = sum([setup.ni for setup in self.setups])
        itemsize = mem.itemsize[self.dtype]
        mem.subnode('C [qnM]', nq * self.bd.mynbands * nao * itemsize)
        nM1, nM2 = self.ksl.get_overlap_matrix_shape()
        mem.subnode('S, T [2 x qmm]', 2 * nq * nM1 * nM2 * itemsize)
        mem.subnode('P [aqMi]', nq * nao * ni_total // self.gd.comm.size)
        self.tci.estimate_memory(mem.subnode('TCI'))
        self.basis_functions.estimate_memory(mem.subnode('BasisFunctions'))
        self.eigensolver.estimate_memory(mem.subnode('Eigensolver'),
                                         self.dtype)
Example #7
0
class LCAOWaveFunctions(WaveFunctions):
    def __init__(self, ksl, gd, nvalence, setups, bd,
                 dtype, world, kd, timer=None):
        WaveFunctions.__init__(self, gd, nvalence, setups, bd,
                               dtype, world, kd, timer)
        self.ksl = ksl
        self.S_qMM = None
        self.T_qMM = None
        self.P_aqMi = None
        
        self.timer.start('TCI: Evaluate splines')
        self.tci = NewTCI(gd.cell_cv, gd.pbc_c, setups, kd.ibzk_qc, kd.gamma)
        self.timer.stop('TCI: Evaluate splines')
        
        self.basis_functions = BasisFunctions(gd,
                                              [setup.phit_j
                                               for setup in setups],
                                              kd.comm,
                                              cut=True)
        if not kd.gamma:
            self.basis_functions.set_k_points(kd.ibzk_qc)

    def summary(self, fd):
        fd.write('Mode: LCAO\n')
        
    def set_eigensolver(self, eigensolver):
        WaveFunctions.set_eigensolver(self, eigensolver)
        eigensolver.initialize(self.gd, self.dtype, self.setups.nao, self.ksl)

    def set_positions(self, spos_ac):
        self.timer.start('Basic WFS set positions')
        WaveFunctions.set_positions(self, spos_ac)
        self.timer.stop('Basic WFS set positions')
        self.timer.start('Basis functions set positions')
        self.basis_functions.set_positions(spos_ac)
        self.timer.stop('Basis functions set positions')
        if self.ksl is not None:
            self.basis_functions.set_matrix_distribution(self.ksl.Mstart,
                                                         self.ksl.Mstop)

        nq = len(self.kd.ibzk_qc)
        nao = self.setups.nao
        mynbands = self.mynbands
        
        Mstop = self.ksl.Mstop
        Mstart = self.ksl.Mstart
        mynao = Mstop - Mstart

        if self.ksl.using_blacs: # XXX
            # S and T have been distributed to a layout with blacs, so
            # discard them to force reallocation from scratch.
            #
            # TODO: evaluate S and T when they *are* distributed, thus saving
            # memory and avoiding this problem
            self.S_qMM = None
            self.T_qMM = None
        
        S_qMM = self.S_qMM
        T_qMM = self.T_qMM
        
        if S_qMM is None: # XXX
            # First time:
            assert T_qMM is None
            if self.ksl.using_blacs: # XXX
                self.tci.set_matrix_distribution(Mstart, mynao)
                
            S_qMM = np.empty((nq, mynao, nao), self.dtype)
            T_qMM = np.empty((nq, mynao, nao), self.dtype)
        
        for kpt in self.kpt_u:
            if kpt.C_nM is None:
                kpt.C_nM = np.empty((mynbands, nao), self.dtype)

        self.allocate_arrays_for_projections(
            self.basis_functions.my_atom_indices)
            
        self.P_aqMi = {}
        for a in self.basis_functions.my_atom_indices:
            ni = self.setups[a].ni
            self.P_aqMi[a] = np.empty((nq, nao, ni), self.dtype)

        for kpt in self.kpt_u:
            q = kpt.q
            kpt.P_aMi = dict([(a, P_qMi[q])
                              for a, P_qMi in self.P_aqMi.items()])

        self.timer.start('TCI: Calculate S, T, P')
        # Calculate lower triangle of S and T matrices:
        self.tci.calculate(spos_ac, S_qMM, T_qMM, self.P_aqMi)
        add_paw_correction_to_overlap(self.setups, self.P_aqMi, S_qMM,
                                      self.ksl.Mstart, self.ksl.Mstop)
        self.timer.stop('TCI: Calculate S, T, P')

        S_MM = None # allow garbage collection of old S_qMM after redist
        S_qMM = self.ksl.distribute_overlap_matrix(S_qMM)
        T_qMM = self.ksl.distribute_overlap_matrix(T_qMM)

        for kpt in self.kpt_u:
            q = kpt.q
            kpt.S_MM = S_qMM[q]
            kpt.T_MM = T_qMM[q]


        if (debug and self.band_comm.size == 1 and self.gd.comm.rank == 0 and
            nao > 0 and not self.ksl.using_blacs):
            # S and T are summed only on comm master, so check only there
            from numpy.linalg import eigvalsh
            self.timer.start('Check positive definiteness')
            for S_MM in S_qMM:
                tri2full(S_MM, UL='L')
                smin = eigvalsh(S_MM).real.min()
                if smin < 0:
                    raise RuntimeError('Overlap matrix has negative '
                                       'eigenvalue: %e' % smin)
            self.timer.stop('Check positive definiteness')
        self.positions_set = True
        self.S_qMM = S_qMM
        self.T_qMM = T_qMM

    def initialize(self, density, hamiltonian, spos_ac):
        if density.nt_sG is None:
            if self.kpt_u[0].f_n is None or self.kpt_u[0].C_nM is None:
                density.initialize_from_atomic_densities(self.basis_functions)
            else:
                # We have the info we need for a density matrix, so initialize
                # from that instead of from scratch.  This will be the case
                # after set_positions() during a relaxation
                density.initialize_from_wavefunctions(self)
        else:
            # After a restart, nt_sg doesn't exist yet, so we'll have to
            # make sure it does.  Of course, this should have been taken care
            # of already by this time, so we should improve the code elsewhere
            density.calculate_normalized_charges_and_mix()
        hamiltonian.update(density)
           
    def calculate_density_matrix(self, f_n, C_nM, rho_MM=None):
        # ATLAS can't handle uninitialized output array:
        #rho_MM.fill(42)

        self.timer.start('Calculate density matrix')
        rho_MM = self.ksl.calculate_density_matrix(f_n, C_nM, rho_MM)
        self.timer.stop('Calculate density matrix')
        return rho_MM

        # ----------------------------
        if 1:
            # XXX Should not conjugate, but call gemm(..., 'c')
            # Although that requires knowing C_Mn and not C_nM.
            # that also conforms better to the usual conventions in literature
            Cf_Mn = C_nM.T.conj() * f_n
            gemm(1.0, C_nM, Cf_Mn, 0.0, rho_MM, 'n')
            self.bd.comm.sum(rho_MM)
        else:
            # Alternative suggestion. Might be faster. Someone should test this
            C_Mn = C_nM.T.copy()
            r2k(0.5, C_Mn, f_n * C_Mn, 0.0, rho_MM)
            tri2full(rho_MM)

    def calculate_density_matrix_delta(self, d_nn, C_nM, rho_MM=None):
        # ATLAS can't handle uninitialized output array:
        #rho_MM.fill(42)

        self.timer.start('Calculate density matrix')
        rho_MM = self.ksl.calculate_density_matrix_delta(d_nn, C_nM, rho_MM)
        self.timer.stop('Calculate density matrix')
        return rho_MM

    def add_to_density_from_k_point_with_occupation(self, nt_sG, kpt, f_n):
        """Add contribution to pseudo electron-density. Do not use the standard
        occupation numbers, but ones given with argument f_n."""
        # Custom occupations are used in calculation of response potential
        # with GLLB-potential
        Mstart = self.basis_functions.Mstart
        Mstop = self.basis_functions.Mstop
        if kpt.rho_MM is None:
            rho_MM = self.calculate_density_matrix(f_n, kpt.C_nM)
            if hasattr(kpt, 'c_on'):
                assert self.bd.comm.size == 1
                d_nn = np.zeros((self.bd.mynbands, self.bd.mynbands), dtype=kpt.C_nM.dtype)
                for ne, c_n in zip(kpt.ne_o, kpt.c_on):
                    d_nn += ne * np.outer(c_n.conj(), c_n)
                rho_MM += self.calculate_density_matrix_delta(d_nn, kpt.C_nM)
        else:
            rho_MM = kpt.rho_MM
        self.timer.start('Construct density')
        self.basis_functions.construct_density(rho_MM,
                                               nt_sG[kpt.s], kpt.q)
        self.timer.stop('Construct density')

    def add_to_density_from_k_point(self, nt_sG, kpt):
        """Add contribution to pseudo electron-density. """
        self.add_to_density_from_k_point_with_occupation(nt_sG, kpt, kpt.f_n)

    def add_to_kinetic_density_from_k_point(self, taut_G, kpt):
        raise NotImplementedError('Kinetic density calculation for LCAO '
                                  'wavefunctions is not implemented.')

    def calculate_forces(self, hamiltonian, F_av):
        self.timer.start('LCAO forces')
        spos_ac = self.tci.atoms.get_scaled_positions() % 1.0
        nao = self.ksl.nao
        mynao = self.ksl.mynao
        nq = len(self.kd.ibzk_qc)
        dtype = self.dtype
        dThetadR_qvMM = np.empty((nq, 3, mynao, nao), dtype)
        dTdR_qvMM = np.empty((nq, 3, mynao, nao), dtype)
        dPdR_aqvMi = {}
        for a in self.basis_functions.my_atom_indices:
            ni = self.setups[a].ni
            dPdR_aqvMi[a] = np.empty((nq, 3, nao, ni), dtype)
        self.timer.start('LCAO forces: tci derivative')
        self.tci.calculate_derivative(spos_ac, dThetadR_qvMM, dTdR_qvMM,
                                      dPdR_aqvMi)
        #if not hasattr(self.tci, 'set_positions'): # XXX newtci
        comm = self.gd.comm
        comm.sum(dThetadR_qvMM)
        comm.sum(dTdR_qvMM)
        self.timer.stop('LCAO forces: tci derivative')
        
        # TODO: Most contributions will be the same for each spin.
        
        for kpt in self.kpt_u:
            self.calculate_forces_by_kpoint(kpt, hamiltonian,
                                            F_av, self.tci,
                                            self.P_aqMi,
                                            dThetadR_qvMM[kpt.q],
                                            dTdR_qvMM[kpt.q],
                                            dPdR_aqvMi)
        self.ksl.orbital_comm.sum(F_av)
        if self.bd.comm.rank == 0:
            self.kpt_comm.sum(F_av, 0)
        self.timer.stop('LCAO forces')

    def print_arrays_with_ranks(self, names, arrays_nax):
        # Debugging function for checking properties of distributed arrays
        # Prints rank, label, list of atomic indices, and element sum
        # for parts of array on this cpu as a primitive "hash" function
        my_atom_indices = self.basis_functions.my_atom_indices
        from gpaw.mpi import rank
        for name, array_ax in zip(names, arrays_nax):
            sums = [array_ax[a].sum() for a in my_atom_indices]
            print rank, name, my_atom_indices, sums

    def calculate_forces_by_kpoint(self, kpt, hamiltonian,
                                   F_av, tci, P_aqMi,
                                   dThetadR_vMM, dTdR_vMM, dPdR_aqvMi):
        k = kpt.k
        q = kpt.q
        mynao = self.ksl.mynao
        nao = self.ksl.nao
        dtype = self.dtype

        Mstart = self.ksl.Mstart
        Mstop = self.ksl.Mstop
        
        basis_functions = self.basis_functions
        my_atom_indices = basis_functions.my_atom_indices
        atom_indices = basis_functions.atom_indices        
        
        def _slices(indices):
            for a in indices:
                M1 = basis_functions.M_a[a] - Mstart
                M2 = M1 + self.setups[a].niAO
                yield a, M1, M2
        
        def slices():
            return _slices(atom_indices)
        
        def my_slices():
            return _slices(my_atom_indices)
        
        #
        #         -----                    -----
        #          \    -1                  \    *
        # E      =  )  S     H    rho     =  )  c     eps  f  c
        #  mu nu   /    mu x  x z    z nu   /    n mu    n  n  n nu
        #         -----                    -----
        #          x z                       n
        #
        # We use the transpose of that matrix.  The first form is used
        # if rho is given, otherwise the coefficients are used.
        self.timer.start('LCAO forces: initial')
        if kpt.rho_MM is None:
            rhoT_MM = self.ksl.get_transposed_density_matrix(kpt.f_n, kpt.C_nM)
            ET_MM = self.ksl.get_transposed_density_matrix(kpt.f_n * kpt.eps_n,
                                                           kpt.C_nM)
            if hasattr(kpt, 'c_on'):
                assert self.bd.comm.size == 1
                d_nn = np.zeros((self.bd.mynbands, self.bd.mynbands), dtype=kpt.C_nM.dtype)
                for ne, c_n in zip(kpt.ne_o, kpt.c_on):
                        d_nn += ne * np.outer(c_n.conj(), c_n)
                rhoT_MM += self.ksl.get_transposed_density_matrix_delta(d_nn, kpt.C_nM)
                ET_MM+=self.ksl.get_transposed_density_matrix_delta(d_nn*kpt.eps_n, kpt.C_nM)
        else:
            H_MM = self.eigensolver.calculate_hamiltonian_matrix(hamiltonian,
                                                                 self,
                                                                 kpt)
            tri2full(H_MM)
            S_MM = self.S_qMM[q].copy()
            tri2full(S_MM)
            ET_MM = np.linalg.solve(S_MM, gemmdot(H_MM, kpt.rho_MM)).T.copy()
            del S_MM, H_MM
            rhoT_MM = kpt.rho_MM.T.copy()
        self.timer.stop('LCAO forces: initial')

        
        # Kinetic energy contribution
        #
        #           ----- d T
        #  a         \       mu nu
        # F += 2 Re   )   -------- rho
        #            /    d R         nu mu
        #           -----    mu nu
        #        mu in a; nu
        #
        Fkin_av = np.zeros_like(F_av)
        dEdTrhoT_vMM = (dTdR_vMM * rhoT_MM[np.newaxis]).real
        for a, M1, M2 in my_slices():
            Fkin_av[a, :] = 2 * dEdTrhoT_vMM[:, M1:M2].sum(-1).sum(-1)
        del dEdTrhoT_vMM
        
        # Potential contribution
        #
        #           -----      /  d Phi  (r)
        #  a         \        |        mu    ~
        # F += -2 Re  )       |   ---------- v (r)  Phi  (r) dr rho
        #            /        |     d R                nu          nu mu
        #           -----    /         a
        #        mu in a; nu
        #
        self.timer.start('LCAO forces: potential')
        Fpot_av = np.zeros_like(F_av)
        vt_G = hamiltonian.vt_sG[kpt.s]
        DVt_vMM = np.zeros((3, mynao, nao), dtype)
        # Note that DVt_vMM contains dPhi(r) / dr = - dPhi(r) / dR^a
        basis_functions.calculate_potential_matrix_derivative(vt_G, DVt_vMM, q)
        
        for a, M1, M2 in slices():
            for v in range(3):
                Fpot_av[a, v] = 2 * (DVt_vMM[v, M1:M2, :]
                                     * rhoT_MM[M1:M2, :]).real.sum()
        del DVt_vMM
        self.timer.stop('LCAO forces: potential')
        
        # Density matrix contribution due to basis overlap
        #
        #            ----- d Theta
        #  a          \           mu nu
        # F  += -2 Re  )   ------------  E
        #             /        d R        nu mu
        #            -----        mu nu
        #         mu in a; nu
        #
        Frho_av = np.zeros_like(F_av)
        dThetadRE_vMM = (dThetadR_vMM * ET_MM[np.newaxis]).real
        for a, M1, M2 in my_slices():
            Frho_av[a, :] = -2 * dThetadRE_vMM[:, M1:M2].sum(-1).sum(-1)
        del dThetadRE_vMM

        # Density matrix contribution from PAW correction
        #
        #           -----                        -----
        #  a         \      a                     \     b
        # F +=  2 Re  )    Z      E        - 2 Re  )   Z      E
        #            /      mu nu  nu mu          /     mu nu  nu mu
        #           -----                        -----
        #           mu nu                    b; mu in a; nu
        #
        # with
        #                  b*
        #         -----  dP
        #   b      \       i mu    b   b
        #  Z     =  )   -------- dS   P
        #   mu nu  /     dR        ij  j nu
        #         -----    b mu
        #           ij
        #
        self.timer.start('LCAO forces: paw correction')
        dPdR_avMi = dict([(a, dPdR_aqvMi[a][q]) for a in my_atom_indices])
        work_MM = np.zeros((mynao, nao), dtype)
        ZE_MM = None
        for b in my_atom_indices:
            setup = self.setups[b]
            dO_ii = np.asarray(setup.dO_ii, dtype)
            dOP_iM = np.zeros((setup.ni, nao), dtype)
            gemm(1.0, self.P_aqMi[b][q], dO_ii, 0.0, dOP_iM, 'c')
            for v in range(3):
                gemm(1.0, dOP_iM, dPdR_avMi[b][v][Mstart:Mstop], 0.0,
                     work_MM, 'n')
                ZE_MM = (work_MM * ET_MM).real
                for a, M1, M2 in slices():
                    dE = 2 * ZE_MM[M1:M2].sum()
                    Frho_av[a, v] -= dE # the "b; mu in a; nu" term
                    Frho_av[b, v] += dE # the "mu nu" term
        del work_MM, ZE_MM
        self.timer.stop('LCAO forces: paw correction')
        
        # Atomic density contribution
        #            -----                         -----
        #  a          \     a                       \     b
        # F  += -2 Re  )   A      rho       + 2 Re   )   A      rho
        #             /     mu nu    nu mu          /     mu nu    nu mu
        #            -----                         -----
        #            mu nu                     b; mu in a; nu
        #
        #                  b*
        #         ----- d P
        #  b       \       i mu   b   b
        # A     =   )   ------- dH   P
        #  mu nu   /    d R       ij  j nu
        #         -----    b mu
        #           ij
        #
        self.timer.start('LCAO forces: atomic density')
        Fatom_av = np.zeros_like(F_av)
        for b in my_atom_indices:
            H_ii = np.asarray(unpack(hamiltonian.dH_asp[b][kpt.s]), dtype)
            HP_iM = gemmdot(H_ii, np.conj(self.P_aqMi[b][q].T))
            for v in range(3):
                dPdR_Mi = dPdR_avMi[b][v][Mstart:Mstop]
                ArhoT_MM = (gemmdot(dPdR_Mi, HP_iM) * rhoT_MM).real
                for a, M1, M2 in slices():
                    dE = 2 * ArhoT_MM[M1:M2].sum()
                    Fatom_av[a, v] += dE # the "b; mu in a; nu" term
                    Fatom_av[b, v] -= dE # the "mu nu" term
        self.timer.stop('LCAO forces: atomic density')
        
        F_av += Fkin_av + Fpot_av + Frho_av + Fatom_av

    def _get_wave_function_array(self, u, n):
        kpt = self.kpt_u[u]
        C_nM = kpt.C_nM
        if C_nM is None:
            # Hack to make sure things are available after restart
            self.lazyloader.load(self)
        
        psit_G = self.gd.zeros(dtype=self.dtype)
        psit_1G = psit_G.reshape(1, -1)
        C_1M = kpt.C_nM[n].reshape(1, -1)
        q = kpt.q # Should we enforce q=-1 for gamma-point?
        if self.kd.gamma:
            q = -1
        self.basis_functions.lcao_to_grid(C_1M, psit_1G, q)
        return psit_G

    def load_lazily(self, hamiltonian, spos_ac):
        """Horrible hack to recalculate lcao coefficients after restart."""
        class LazyLoader:
            def __init__(self, hamiltonian, spos_ac):
                self.hamiltonian = hamiltonian
                self.spos_ac = spos_ac
            
            def load(self, wfs):
                wfs.set_positions(self.spos_ac)
                wfs.eigensolver.iterate(hamiltonian, wfs)
                del wfs.lazyloader
        
        self.lazyloader = LazyLoader(hamiltonian, spos_ac)
        
    def write_wave_functions(self, writer):
        if self.world.rank == 0:
            writer.dimension('nbasis', self.setups.nao)
            writer.add('WaveFunctionCoefficients',
                       ('nspins', 'nibzkpts', 'nbands', 'nbasis'),
                       dtype=self.dtype)

        for s in range(self.nspins):
            for k in range(self.nibzkpts):
                C_nM = self.collect_array('C_nM', k, s)
                if self.world.rank == 0:
                    writer.fill(C_nM, s, k)

    def read_coefficients(self, reader):
        for kpt in self.kpt_u:
            kpt.C_nM = self.bd.empty(self.setups.nao, dtype=self.dtype)
            for n in self.bd.get_band_indices():
                kpt.C_nM[n] = reader.get('WaveFunctionCoefficients',
                                         kpt.s, kpt.k, n)

    def estimate_memory(self, mem):
        nq = len(self.kd.ibzk_qc)
        nao = self.setups.nao
        ni_total = sum([setup.ni for setup in self.setups])
        itemsize = mem.itemsize[self.dtype]
        mem.subnode('C [qnM]', nq * self.mynbands * nao * itemsize)
        nM1, nM2 = self.ksl.get_overlap_matrix_shape()
        mem.subnode('S, T [2 x qmm]', 2 * nq * nM1 * nM2 * itemsize)
        mem.subnode('P [aqMi]', nq * nao * ni_total // self.gd.comm.size)
        self.tci.estimate_memory(mem.subnode('TCI'))
        self.basis_functions.estimate_memory(mem.subnode('BasisFunctions'))
        self.eigensolver.estimate_memory(mem.subnode('Eigensolver'),
                                         self.dtype)
Example #8
0
class LCAOWaveFunctions(WaveFunctions):
    mode = 'lcao'

    def __init__(self,
                 ksl,
                 gd,
                 nvalence,
                 setups,
                 bd,
                 dtype,
                 world,
                 kd,
                 kptband_comm,
                 timer,
                 atomic_hamiltonian=None):
        WaveFunctions.__init__(self, gd, nvalence, setups, bd, dtype, world,
                               kd, kptband_comm, timer)
        self.ksl = ksl
        self.S_qMM = None
        self.T_qMM = None
        self.P_aqMi = None

        if atomic_hamiltonian is None:
            if ksl.using_blacs:
                atomic_hamiltonian = 'distributed'
            else:
                atomic_hamiltonian = 'dense'
        if isinstance(atomic_hamiltonian, str):
            atomic_hamiltonian = get_atomic_hamiltonian(atomic_hamiltonian)
        self.atomic_hamiltonian = atomic_hamiltonian

        self.timer.start('TCI: Evaluate splines')
        self.tci = NewTCI(gd.cell_cv, gd.pbc_c, setups, kd.ibzk_qc, kd.gamma)
        self.timer.stop('TCI: Evaluate splines')

        self.basis_functions = BasisFunctions(
            gd, [setup.phit_j for setup in setups], kd, dtype=dtype, cut=True)

    def empty(self, n=(), global_array=False, realspace=False):
        if realspace:
            return self.gd.empty(n, self.dtype, global_array)
        else:
            if isinstance(n, int):
                n = (n, )
            nao = self.setups.nao
            return np.empty(n + (nao, ), self.dtype)

    def summary(self, fd):
        fd.write('Wave functions: LCAO\n')
        fd.write('    Diagonalizer: %s\n' % self.ksl.get_description())
        fd.write('    Atomic Hamiltonian: %s\n' %
                 self.atomic_hamiltonian.description)

    def set_eigensolver(self, eigensolver):
        WaveFunctions.set_eigensolver(self, eigensolver)
        eigensolver.initialize(self.gd, self.dtype, self.setups.nao, self.ksl)

    def set_positions(self, spos_ac):
        self.timer.start('Basic WFS set positions')
        WaveFunctions.set_positions(self, spos_ac)
        self.timer.stop('Basic WFS set positions')
        self.timer.start('Basis functions set positions')
        self.basis_functions.set_positions(spos_ac)
        self.timer.stop('Basis functions set positions')
        if self.ksl is not None:
            self.basis_functions.set_matrix_distribution(
                self.ksl.Mstart, self.ksl.Mstop)

        nq = len(self.kd.ibzk_qc)
        nao = self.setups.nao
        mynbands = self.bd.mynbands

        Mstop = self.ksl.Mstop
        Mstart = self.ksl.Mstart
        mynao = Mstop - Mstart

        if self.ksl.using_blacs:  # XXX
            # S and T have been distributed to a layout with blacs, so
            # discard them to force reallocation from scratch.
            #
            # TODO: evaluate S and T when they *are* distributed, thus saving
            # memory and avoiding this problem
            self.S_qMM = None
            self.T_qMM = None

        S_qMM = self.S_qMM
        T_qMM = self.T_qMM

        if S_qMM is None:  # XXX
            # First time:
            assert T_qMM is None
            if self.ksl.using_blacs:  # XXX
                self.tci.set_matrix_distribution(Mstart, mynao)

            S_qMM = np.empty((nq, mynao, nao), self.dtype)
            T_qMM = np.empty((nq, mynao, nao), self.dtype)

        for kpt in self.kpt_u:
            if kpt.C_nM is None:
                kpt.C_nM = np.empty((mynbands, nao), self.dtype)

        self.allocate_arrays_for_projections(
            self.basis_functions.my_atom_indices)

        self.P_aqMi = {}
        for a in self.basis_functions.my_atom_indices:
            ni = self.setups[a].ni
            self.P_aqMi[a] = np.empty((nq, nao, ni), self.dtype)

        self.timer.start('TCI: Calculate S, T, P')
        # Calculate lower triangle of S and T matrices:
        self.tci.calculate(spos_ac, S_qMM, T_qMM, self.P_aqMi)

        # XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
        from gpaw.lcao.newoverlap import newoverlap
        self.P_neighbors_a, self.P_aaqim, self.newP_aqMi \
            = newoverlap(self, spos_ac)
        # XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

        for kpt in self.kpt_u:
            q = kpt.q
            kpt.P_aMi = dict([(a, P_qMi[q])
                              for a, P_qMi in self.P_aqMi.items()])

            kpt.P_aaim = dict([(a1a2, P_qim[q])
                               for a1a2, P_qim in self.P_aaqim.items()])

        add_paw_correction_to_overlap(self.setups, self.P_aqMi, S_qMM,
                                      self.ksl.Mstart, self.ksl.Mstop)
        self.timer.stop('TCI: Calculate S, T, P')

        S_MM = None  # allow garbage collection of old S_qMM after redist
        S_qMM = self.ksl.distribute_overlap_matrix(S_qMM, root=-1)
        T_qMM = self.ksl.distribute_overlap_matrix(T_qMM, root=-1)
        for kpt in self.kpt_u:
            q = kpt.q
            kpt.S_MM = S_qMM[q]
            kpt.T_MM = T_qMM[q]

        if (debug and self.band_comm.size == 1 and self.gd.comm.rank == 0
                and nao > 0 and not self.ksl.using_blacs):
            # S and T are summed only on comm master, so check only there
            from numpy.linalg import eigvalsh
            self.timer.start('Check positive definiteness')
            for S_MM in S_qMM:
                tri2full(S_MM, UL='L')
                smin = eigvalsh(S_MM).real.min()
                if smin < 0:
                    raise RuntimeError('Overlap matrix has negative '
                                       'eigenvalue: %e' % smin)
            self.timer.stop('Check positive definiteness')
        self.positions_set = True
        self.S_qMM = S_qMM
        self.T_qMM = T_qMM

    def initialize(self, density, hamiltonian, spos_ac):
        self.timer.start('LCAO WFS Initialize')
        if density.nt_sG is None:
            if self.kpt_u[0].f_n is None or self.kpt_u[0].C_nM is None:
                density.initialize_from_atomic_densities(self.basis_functions)
            else:
                # We have the info we need for a density matrix, so initialize
                # from that instead of from scratch.  This will be the case
                # after set_positions() during a relaxation
                density.initialize_from_wavefunctions(self)
            # Initialize GLLB-potential from basis function orbitals
            if hamiltonian.xc.type == 'GLLB':
                hamiltonian.xc.initialize_from_atomic_orbitals(\
                    self.basis_functions)

        else:
            # After a restart, nt_sg doesn't exist yet, so we'll have to
            # make sure it does.  Of course, this should have been taken care
            # of already by this time, so we should improve the code elsewhere
            density.calculate_normalized_charges_and_mix()
        #print "Updating hamiltonian in LCAO initialize wfs"
        hamiltonian.update(density)
        self.timer.stop('LCAO WFS Initialize')

    def initialize_wave_functions_from_lcao(self):
        """
        Fill the calc.wfs.kpt_[u].psit_nG arrays with usefull data.
        
        Normally psit_nG is NOT used in lcao mode, but some extensions
        (like ase.dft.wannier) want to have it.
        This code is adapted from fd.py / initialize_from_lcao_coefficients()
        and fills psit_nG with data constructed from the current lcao
        coefficients (kpt.C_nM).
        
        (This may or may not work in band-parallel case!)
        """
        #print('initialize_wave_functions_from_lcao')
        bfs = self.basis_functions
        for kpt in self.kpt_u:
            #print("kpt: {0}".format(kpt))
            kpt.psit_nG = self.gd.zeros(self.bd.nbands, self.dtype)
            bfs.lcao_to_grid(kpt.C_nM, kpt.psit_nG[:self.bd.mynbands], kpt.q)
            # kpt.C_nM = None

    def initialize_wave_functions_from_restart_file(self):
        """Dummy function to ensure compatibility to fd mode"""
        self.initialize_wave_functions_from_lcao()

    def calculate_density_matrix(self, f_n, C_nM, rho_MM=None):
        # ATLAS can't handle uninitialized output array:
        #rho_MM.fill(42)

        self.timer.start('Calculate density matrix')
        rho_MM = self.ksl.calculate_density_matrix(f_n, C_nM, rho_MM)
        self.timer.stop('Calculate density matrix')
        return rho_MM

        # ----------------------------
        if 1:
            # XXX Should not conjugate, but call gemm(..., 'c')
            # Although that requires knowing C_Mn and not C_nM.
            # that also conforms better to the usual conventions in literature
            Cf_Mn = C_nM.T.conj() * f_n
            self.timer.start('gemm')
            gemm(1.0, C_nM, Cf_Mn, 0.0, rho_MM, 'n')
            self.timer.stop('gemm')
            self.timer.start('band comm sum')
            self.bd.comm.sum(rho_MM)
            self.timer.stop('band comm sum')
        else:
            # Alternative suggestion. Might be faster. Someone should test this
            from gpaw.utilities.blas import r2k
            C_Mn = C_nM.T.copy()
            r2k(0.5, C_Mn, f_n * C_Mn, 0.0, rho_MM)
            tri2full(rho_MM)

    def calculate_density_matrix_delta(self, d_nn, C_nM, rho_MM=None):
        # ATLAS can't handle uninitialized output array:
        #rho_MM.fill(42)

        self.timer.start('Calculate density matrix')
        rho_MM = self.ksl.calculate_density_matrix_delta(d_nn, C_nM, rho_MM)
        self.timer.stop('Calculate density matrix')
        return rho_MM

    def add_to_density_from_k_point_with_occupation(self, nt_sG, kpt, f_n):
        """Add contribution to pseudo electron-density. Do not use the standard
        occupation numbers, but ones given with argument f_n."""
        # Custom occupations are used in calculation of response potential
        # with GLLB-potential
        if kpt.rho_MM is None:
            rho_MM = self.calculate_density_matrix(f_n, kpt.C_nM)
            if hasattr(kpt, 'c_on'):
                assert self.bd.comm.size == 1
                d_nn = np.zeros((self.bd.mynbands, self.bd.mynbands),
                                dtype=kpt.C_nM.dtype)
                for ne, c_n in zip(kpt.ne_o, kpt.c_on):
                    assert abs(c_n.imag).max() < 1e-14
                    d_nn += ne * np.outer(c_n.conj(), c_n).real
                rho_MM += self.calculate_density_matrix_delta(d_nn, kpt.C_nM)
        else:
            rho_MM = kpt.rho_MM
        self.timer.start('Construct density')
        self.basis_functions.construct_density(rho_MM, nt_sG[kpt.s], kpt.q)
        self.timer.stop('Construct density')

    def add_to_kinetic_density_from_k_point(self, taut_G, kpt):
        raise NotImplementedError('Kinetic density calculation for LCAO '
                                  'wavefunctions is not implemented.')

    def calculate_forces(self, hamiltonian, F_av):
        self.timer.start('LCAO forces')

        spos_ac = self.tci.atoms.get_scaled_positions() % 1.0
        ksl = self.ksl
        nao = ksl.nao
        mynao = ksl.mynao
        nq = len(self.kd.ibzk_qc)
        dtype = self.dtype
        tci = self.tci
        gd = self.gd
        bfs = self.basis_functions

        Mstart = ksl.Mstart
        Mstop = ksl.Mstop

        from gpaw.kohnsham_layouts import BlacsOrbitalLayouts
        isblacs = isinstance(ksl, BlacsOrbitalLayouts)  # XXX

        if not isblacs:
            self.timer.start('TCI derivative')
            dThetadR_qvMM = np.empty((nq, 3, mynao, nao), dtype)
            dTdR_qvMM = np.empty((nq, 3, mynao, nao), dtype)
            dPdR_aqvMi = {}
            for a in self.basis_functions.my_atom_indices:
                ni = self.setups[a].ni
                dPdR_aqvMi[a] = np.empty((nq, 3, nao, ni), dtype)
            tci.calculate_derivative(spos_ac, dThetadR_qvMM, dTdR_qvMM,
                                     dPdR_aqvMi)
            gd.comm.sum(dThetadR_qvMM)
            gd.comm.sum(dTdR_qvMM)
            self.timer.stop('TCI derivative')

            my_atom_indices = bfs.my_atom_indices
            atom_indices = bfs.atom_indices

            def _slices(indices):
                for a in indices:
                    M1 = bfs.M_a[a] - Mstart
                    M2 = M1 + self.setups[a].nao
                    if M2 > 0:
                        yield a, max(0, M1), M2

            def slices():
                return _slices(atom_indices)

            def my_slices():
                return _slices(my_atom_indices)

        #
        #         -----                    -----
        #          \    -1                  \    *
        # E      =  )  S     H    rho     =  )  c     eps  f  c
        #  mu nu   /    mu x  x z    z nu   /    n mu    n  n  n nu
        #         -----                    -----
        #          x z                       n
        #
        # We use the transpose of that matrix.  The first form is used
        # if rho is given, otherwise the coefficients are used.
        self.timer.start('Initial')

        rhoT_uMM = []
        ET_uMM = []

        if not isblacs:
            if self.kpt_u[0].rho_MM is None:
                self.timer.start('Get density matrix')
                for kpt in self.kpt_u:
                    rhoT_MM = ksl.get_transposed_density_matrix(
                        kpt.f_n, kpt.C_nM)
                    rhoT_uMM.append(rhoT_MM)
                    ET_MM = ksl.get_transposed_density_matrix(
                        kpt.f_n * kpt.eps_n, kpt.C_nM)
                    ET_uMM.append(ET_MM)

                    if hasattr(kpt, 'c_on'):
                        # XXX does this work with BLACS/non-BLACS/etc.?
                        assert self.bd.comm.size == 1
                        d_nn = np.zeros((self.bd.mynbands, self.bd.mynbands),
                                        dtype=kpt.C_nM.dtype)
                        for ne, c_n in zip(kpt.ne_o, kpt.c_on):
                            d_nn += ne * np.outer(c_n.conj(), c_n)
                        rhoT_MM += ksl.get_transposed_density_matrix_delta(\
                            d_nn, kpt.C_nM)
                        ET_MM += ksl.get_transposed_density_matrix_delta(\
                            d_nn * kpt.eps_n, kpt.C_nM)
                self.timer.stop('Get density matrix')
            else:
                rhoT_uMM = []
                ET_uMM = []
                for kpt in self.kpt_u:
                    H_MM = self.eigensolver.calculate_hamiltonian_matrix(\
                        hamiltonian, self, kpt)
                    tri2full(H_MM)
                    S_MM = kpt.S_MM.copy()
                    tri2full(S_MM)
                    ET_MM = np.linalg.solve(S_MM,
                                            gemmdot(H_MM,
                                                    kpt.rho_MM)).T.copy()
                    del S_MM, H_MM
                    rhoT_MM = kpt.rho_MM.T.copy()
                    rhoT_uMM.append(rhoT_MM)
                    ET_uMM.append(ET_MM)
        self.timer.stop('Initial')

        if isblacs:  # XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
            from gpaw.blacs import BlacsGrid, Redistributor

            def get_density_matrix(f_n, C_nM, redistributor):
                rho1_mm = ksl.calculate_blocked_density_matrix(f_n,
                                                               C_nM).conj()
                rho_mm = redistributor.redistribute(rho1_mm)
                return rho_mm

            pcutoff_a = [
                max([pt.get_cutoff() for pt in setup.pt_j])
                for setup in self.setups
            ]
            phicutoff_a = [
                max([phit.get_cutoff() for phit in setup.phit_j])
                for setup in self.setups
            ]

            # XXX should probably use bdsize x gdsize instead
            # That would be consistent with some existing grids
            grid = BlacsGrid(ksl.block_comm, self.gd.comm.size,
                             self.bd.comm.size)

            blocksize1 = -(-nao // grid.nprow)
            blocksize2 = -(-nao // grid.npcol)
            # XXX what are rows and columns actually?
            desc = grid.new_descriptor(nao, nao, blocksize1, blocksize2)

            rhoT_umm = []
            ET_umm = []
            redistributor = Redistributor(grid.comm, ksl.mmdescriptor, desc)
            Fpot_av = np.zeros_like(F_av)
            for u, kpt in enumerate(self.kpt_u):
                self.timer.start('Get density matrix')
                rhoT_mm = get_density_matrix(kpt.f_n, kpt.C_nM, redistributor)
                rhoT_umm.append(rhoT_mm)
                self.timer.stop('Get density matrix')

                self.timer.start('Potential')
                rhoT_mM = ksl.distribute_to_columns(rhoT_mm, desc)

                vt_G = hamiltonian.vt_sG[kpt.s]
                Fpot_av += bfs.calculate_force_contribution(
                    vt_G, rhoT_mM, kpt.q)
                del rhoT_mM
                self.timer.stop('Potential')

            self.timer.start('Get density matrix')
            for kpt in self.kpt_u:
                ET_mm = get_density_matrix(kpt.f_n * kpt.eps_n, kpt.C_nM,
                                           redistributor)
                ET_umm.append(ET_mm)
            self.timer.stop('Get density matrix')

            M1start = blocksize1 * grid.myrow
            M2start = blocksize2 * grid.mycol

            M1stop = min(M1start + blocksize1, nao)
            M2stop = min(M2start + blocksize2, nao)

            m1max = M1stop - M1start
            m2max = M2stop - M2start

        if not isblacs:
            # Kinetic energy contribution
            #
            #           ----- d T
            #  a         \       mu nu
            # F += 2 Re   )   -------- rho
            #            /    d R         nu mu
            #           -----    mu nu
            #        mu in a; nu
            #
            Fkin_av = np.zeros_like(F_av)
            for u, kpt in enumerate(self.kpt_u):
                dEdTrhoT_vMM = (dTdR_qvMM[kpt.q] *
                                rhoT_uMM[u][np.newaxis]).real
                for a, M1, M2 in my_slices():
                    Fkin_av[a, :] += \
                        2.0 * dEdTrhoT_vMM[:, M1:M2].sum(-1).sum(-1)
            del dEdTrhoT_vMM

            # Density matrix contribution due to basis overlap
            #
            #            ----- d Theta
            #  a          \           mu nu
            # F  += -2 Re  )   ------------  E
            #             /        d R        nu mu
            #            -----        mu nu
            #         mu in a; nu
            #
            Ftheta_av = np.zeros_like(F_av)
            for u, kpt in enumerate(self.kpt_u):
                dThetadRE_vMM = (dThetadR_qvMM[kpt.q] *
                                 ET_uMM[u][np.newaxis]).real
                for a, M1, M2 in my_slices():
                    Ftheta_av[a, :] += \
                        -2.0 * dThetadRE_vMM[:, M1:M2].sum(-1).sum(-1)
            del dThetadRE_vMM

        if isblacs:
            from gpaw.lcao.overlap import TwoCenterIntegralCalculator
            self.timer.start('Prepare TCI loop')
            M_a = bfs.M_a

            Fkin2_av = np.zeros_like(F_av)
            Ftheta2_av = np.zeros_like(F_av)

            cell_cv = tci.atoms.cell
            spos_ac = tci.atoms.get_scaled_positions() % 1.0

            overlapcalc = TwoCenterIntegralCalculator(self.kd.ibzk_qc,
                                                      derivative=False)

            # XXX this is not parallel *AT ALL*.
            self.timer.start('Get neighbors')
            nl = tci.atompairs.pairs.neighbors
            r_and_offset_aao = get_r_and_offsets(nl, spos_ac, cell_cv)
            atompairs = r_and_offset_aao.keys()
            atompairs.sort()
            self.timer.stop('Get neighbors')

            T_expansions = tci.T_expansions
            Theta_expansions = tci.Theta_expansions
            P_expansions = tci.P_expansions
            nq = len(self.kd.ibzk_qc)

            dH_asp = hamiltonian.dH_asp

            self.timer.start('broadcast dH')
            alldH_asp = {}
            for a in range(len(self.setups)):
                gdrank = bfs.sphere_a[a].rank
                if gdrank == gd.rank:
                    dH_sp = dH_asp[a]
                else:
                    ni = self.setups[a].ni
                    dH_sp = np.empty((self.nspins, ni * (ni + 1) // 2))
                gd.comm.broadcast(dH_sp, gdrank)
                # okay, now everyone gets copies of dH_sp
                alldH_asp[a] = dH_sp
            self.timer.stop('broadcast dH')

            # This will get sort of hairy.  We need to account for some
            # three-center overlaps, such as:
            #
            #         a1
            #      Phi   ~a3    a3  ~a3     a2     a2,a1
            #   < ----  |p  > dH   <p   |Phi  > rho
            #      dR
            #
            # To this end we will loop over all pairs of atoms (a1, a3),
            # and then a sub-loop over (a3, a2).
            from gpaw.lcao.overlap import DerivativeAtomicDisplacement

            class Displacement(DerivativeAtomicDisplacement):
                def __init__(self, a1, a2, R_c, offset):
                    phases = overlapcalc.phaseclass(overlapcalc.ibzk_qc,
                                                    offset)
                    DerivativeAtomicDisplacement.__init__(
                        self, None, a1, a2, R_c, offset, phases)

            # Cache of Displacement objects with spherical harmonics with
            # evaluated spherical harmonics.
            disp_aao = {}

            def get_displacements(a1, a2, maxdistance):
                # XXX the way maxdistance is handled it can lead to
                # bad caching when different maxdistances are passed
                # to subsequent calls with same pair of atoms
                disp_o = disp_aao.get((a1, a2))
                if disp_o is None:
                    disp_o = []
                    for R_c, offset in r_and_offset_aao[(a1, a2)]:
                        if np.linalg.norm(R_c) > maxdistance:
                            continue
                        disp = Displacement(a1, a2, R_c, offset)
                        disp_o.append(disp)
                    disp_aao[(a1, a2)] = disp_o
                return [disp for disp in disp_o if disp.r < maxdistance]

            self.timer.stop('Prepare TCI loop')
            self.timer.start('Not so complicated loop')

            for (a1, a2) in atompairs:
                if a1 >= a2:
                    # Actually this leads to bad load balance.
                    # We should take a1 > a2 or a1 < a2 equally many times.
                    # Maybe decide which of these choices
                    # depending on whether a2 % 1 == 0
                    continue

                m1start = M_a[a1] - M1start
                m2start = M_a[a2] - M2start
                if m1start >= blocksize1 or m2start >= blocksize2:
                    continue  # (we have only one block per CPU)

                T_expansion = T_expansions.get(a1, a2)
                Theta_expansion = Theta_expansions.get(a1, a2)
                #P_expansion = P_expansions.get(a1, a2)
                nm1, nm2 = T_expansion.shape

                m1stop = min(m1start + nm1, m1max)
                m2stop = min(m2start + nm2, m2max)

                if m1stop <= 0 or m2stop <= 0:
                    continue

                m1start = max(m1start, 0)
                m2start = max(m2start, 0)
                J1start = max(0, M1start - M_a[a1])
                J2start = max(0, M2start - M_a[a2])
                M1stop = J1start + m1stop - m1start
                J2stop = J2start + m2stop - m2start

                dTdR_qvmm = T_expansion.zeros((nq, 3), dtype=dtype)
                dThetadR_qvmm = Theta_expansion.zeros((nq, 3), dtype=dtype)

                disp_o = get_displacements(a1, a2,
                                           phicutoff_a[a1] + phicutoff_a[a2])
                for disp in disp_o:
                    disp.evaluate_overlap(T_expansion, dTdR_qvmm)
                    disp.evaluate_overlap(Theta_expansion, dThetadR_qvmm)

                for u, kpt in enumerate(self.kpt_u):
                    rhoT_mm = rhoT_umm[u][m1start:m1stop, m2start:m2stop]
                    ET_mm = ET_umm[u][m1start:m1stop, m2start:m2stop]
                    Fkin_v = 2.0 * (
                        dTdR_qvmm[kpt.q][:, J1start:M1stop, J2start:J2stop] *
                        rhoT_mm[np.newaxis]).real.sum(-1).sum(-1)
                    Ftheta_v = 2.0 * (dThetadR_qvmm[kpt.q][:, J1start:M1stop,
                                                           J2start:J2stop] *
                                      ET_mm[np.newaxis]).real.sum(-1).sum(-1)
                    Fkin2_av[a1] += Fkin_v
                    Fkin2_av[a2] -= Fkin_v
                    Ftheta2_av[a1] -= Ftheta_v
                    Ftheta2_av[a2] += Ftheta_v

            Fkin_av = Fkin2_av
            Ftheta_av = Ftheta2_av
            self.timer.stop('Not so complicated loop')

            dHP_and_dSP_aauim = {}

            a2values = {}
            for (a2, a3) in atompairs:
                if not a3 in a2values:
                    a2values[a3] = []
                a2values[a3].append(a2)

            Fatom_av = np.zeros_like(F_av)
            Frho_av = np.zeros_like(F_av)
            self.timer.start('Complicated loop')
            for a1, a3 in atompairs:
                if a1 == a3:
                    # Functions reside on same atom, so their overlap
                    # does not change when atom is displaced
                    continue
                m1start = M_a[a1] - M1start
                if m1start >= blocksize1:
                    continue

                P_expansion = P_expansions.get(a1, a3)
                nm1 = P_expansion.shape[0]
                m1stop = min(m1start + nm1, m1max)
                if m1stop <= 0:
                    continue

                m1start = max(m1start, 0)
                J1start = max(0, M1start - M_a[a1])
                J1stop = J1start + m1stop - m1start

                disp_o = get_displacements(a1, a3,
                                           phicutoff_a[a1] + pcutoff_a[a3])
                if len(disp_o) == 0:
                    continue

                dPdR_qvmi = P_expansion.zeros((nq, 3), dtype=dtype)
                for disp in disp_o:
                    disp.evaluate_overlap(P_expansion, dPdR_qvmi)

                dPdR_qvmi = dPdR_qvmi[:, :, J1start:J1stop, :].copy()
                for a2 in a2values[a3]:
                    m2start = M_a[a2] - M2start
                    if m2start >= blocksize2:
                        continue

                    P_expansion2 = P_expansions.get(a2, a3)
                    nm2 = P_expansion2.shape[0]
                    m2stop = min(m2start + nm2, m2max)
                    if m2stop <= 0:
                        continue

                    disp_o = get_displacements(a2, a3,
                                               phicutoff_a[a2] + pcutoff_a[a3])
                    if len(disp_o) == 0:
                        continue

                    m2start = max(m2start, 0)
                    J2start = max(0, M2start - M_a[a2])
                    J2stop = J2start + m2stop - m2start

                    if (a2, a3) in dHP_and_dSP_aauim:
                        dHP_uim, dSP_uim = dHP_and_dSP_aauim[(a2, a3)]
                    else:
                        P_qmi = P_expansion2.zeros((nq, ), dtype=dtype)
                        for disp in disp_o:
                            disp.evaluate_direct(P_expansion2, P_qmi)
                        P_qmi = P_qmi[:, J2start:J2stop].copy()
                        dH_sp = alldH_asp[a3]
                        dS_ii = self.setups[a3].dO_ii

                        dHP_uim = []
                        dSP_uim = []
                        for u, kpt in enumerate(self.kpt_u):
                            dH_ii = unpack(dH_sp[kpt.s])
                            dHP_im = np.dot(P_qmi[kpt.q], dH_ii).T.conj()
                            # XXX only need nq of these
                            dSP_im = np.dot(P_qmi[kpt.q], dS_ii).T.conj()
                            dHP_uim.append(dHP_im)
                            dSP_uim.append(dSP_im)
                            dHP_and_dSP_aauim[(a2, a3)] = dHP_uim, dSP_uim

                    for u, kpt in enumerate(self.kpt_u):
                        rhoT_mm = rhoT_umm[u][m1start:m1stop, m2start:m2stop]
                        ET_mm = ET_umm[u][m1start:m1stop, m2start:m2stop]
                        dPdRdHP_vmm = np.dot(dPdR_qvmi[kpt.q], dHP_uim[u])
                        dPdRdSP_vmm = np.dot(dPdR_qvmi[kpt.q], dSP_uim[u])

                        Fatom_c = 2.0 * (dPdRdHP_vmm *
                                         rhoT_mm).real.sum(-1).sum(-1)
                        Frho_c = 2.0 * (dPdRdSP_vmm *
                                        ET_mm).real.sum(-1).sum(-1)
                        Fatom_av[a1] += Fatom_c
                        Fatom_av[a3] -= Fatom_c

                        Frho_av[a1] -= Frho_c
                        Frho_av[a3] += Frho_c

            self.timer.stop('Complicated loop')

        if not isblacs:
            # Potential contribution
            #
            #           -----      /  d Phi  (r)
            #  a         \        |        mu    ~
            # F += -2 Re  )       |   ---------- v (r)  Phi  (r) dr rho
            #            /        |     d R                nu          nu mu
            #           -----    /         a
            #        mu in a; nu
            #
            self.timer.start('Potential')
            Fpot_av = np.zeros_like(F_av)
            for u, kpt in enumerate(self.kpt_u):
                vt_G = hamiltonian.vt_sG[kpt.s]
                Fpot_av += bfs.calculate_force_contribution(
                    vt_G, rhoT_uMM[u], kpt.q)
            self.timer.stop('Potential')

            # Density matrix contribution from PAW correction
            #
            #           -----                        -----
            #  a         \      a                     \     b
            # F +=  2 Re  )    Z      E        - 2 Re  )   Z      E
            #            /      mu nu  nu mu          /     mu nu  nu mu
            #           -----                        -----
            #           mu nu                    b; mu in a; nu
            #
            # with
            #                  b*
            #         -----  dP
            #   b      \       i mu    b   b
            #  Z     =  )   -------- dS   P
            #   mu nu  /     dR        ij  j nu
            #         -----    b mu
            #           ij
            #
            self.timer.start('Paw correction')
            Frho_av = np.zeros_like(F_av)
            for u, kpt in enumerate(self.kpt_u):
                work_MM = np.zeros((mynao, nao), dtype)
                ZE_MM = None
                for b in my_atom_indices:
                    setup = self.setups[b]
                    dO_ii = np.asarray(setup.dO_ii, dtype)
                    dOP_iM = np.zeros((setup.ni, nao), dtype)
                    gemm(1.0, self.P_aqMi[b][kpt.q], dO_ii, 0.0, dOP_iM, 'c')
                    for v in range(3):
                        gemm(1.0, dOP_iM,
                             dPdR_aqvMi[b][kpt.q][v][Mstart:Mstop], 0.0,
                             work_MM, 'n')
                        ZE_MM = (work_MM * ET_uMM[u]).real
                        for a, M1, M2 in slices():
                            dE = 2 * ZE_MM[M1:M2].sum()
                            Frho_av[a, v] -= dE  # the "b; mu in a; nu" term
                            Frho_av[b, v] += dE  # the "mu nu" term
            del work_MM, ZE_MM
            self.timer.stop('Paw correction')

            # Atomic density contribution
            #            -----                         -----
            #  a          \     a                       \     b
            # F  += -2 Re  )   A      rho       + 2 Re   )   A      rho
            #             /     mu nu    nu mu          /     mu nu    nu mu
            #            -----                         -----
            #            mu nu                     b; mu in a; nu
            #
            #                  b*
            #         ----- d P
            #  b       \       i mu   b   b
            # A     =   )   ------- dH   P
            #  mu nu   /    d R       ij  j nu
            #         -----    b mu
            #           ij
            #
            self.timer.start('Atomic Hamiltonian force')
            Fatom_av = np.zeros_like(F_av)
            for u, kpt in enumerate(self.kpt_u):
                for b in my_atom_indices:
                    H_ii = np.asarray(unpack(hamiltonian.dH_asp[b][kpt.s]),
                                      dtype)
                    HP_iM = gemmdot(
                        H_ii,
                        np.ascontiguousarray(self.P_aqMi[b][kpt.q].T.conj()))
                    for v in range(3):
                        dPdR_Mi = dPdR_aqvMi[b][kpt.q][v][Mstart:Mstop]
                        ArhoT_MM = (gemmdot(dPdR_Mi, HP_iM) * rhoT_uMM[u]).real
                        for a, M1, M2 in slices():
                            dE = 2 * ArhoT_MM[M1:M2].sum()
                            Fatom_av[a, v] += dE  # the "b; mu in a; nu" term
                            Fatom_av[b, v] -= dE  # the "mu nu" term
            self.timer.stop('Atomic Hamiltonian force')

        F_av += Fkin_av + Fpot_av + Ftheta_av + Frho_av + Fatom_av
        self.timer.start('Wait for sum')
        ksl.orbital_comm.sum(F_av)
        if self.bd.comm.rank == 0:
            self.kd.comm.sum(F_av, 0)
        self.timer.stop('Wait for sum')
        self.timer.stop('LCAO forces')

    def _get_wave_function_array(self, u, n, realspace=True):
        kpt = self.kpt_u[u]
        if kpt.C_nM is None:
            # Hack to make sure things are available after restart
            self.lazyloader.load(self)

        C_M = kpt.C_nM[n]

        if realspace:
            psit_G = self.gd.zeros(dtype=self.dtype)
            self.basis_functions.lcao_to_grid(C_M, psit_G, kpt.q)
            return psit_G
        else:
            return C_M

    def load_lazily(self, hamiltonian, spos_ac):
        """Horrible hack to recalculate lcao coefficients after restart."""
        self.basis_functions.set_positions(spos_ac)

        class LazyLoader:
            def __init__(self, hamiltonian, spos_ac):
                self.spos_ac = spos_ac

            def load(self, wfs):
                wfs.set_positions(self.spos_ac)  # this sets rank_a
                # Now we need to pass wfs.rank_a or things to work
                # XXX WTF why does one have to fiddle with rank_a???
                hamiltonian.set_positions(self.spos_ac, wfs.rank_a)
                wfs.eigensolver.iterate(hamiltonian, wfs)
                del wfs.lazyloader

        self.lazyloader = LazyLoader(hamiltonian, spos_ac)

    def write(self, writer, write_wave_functions=False):
        writer['Mode'] = 'lcao'

        if not write_wave_functions:
            return

        writer.dimension('nbasis', self.setups.nao)
        writer.add('WaveFunctionCoefficients',
                   ('nspins', 'nibzkpts', 'nbands', 'nbasis'),
                   dtype=self.dtype)

        for s in range(self.nspins):
            for k in range(self.kd.nibzkpts):
                C_nM = self.collect_array('C_nM', k, s)
                writer.fill(C_nM, s, k)

    def read_coefficients(self, reader):
        for kpt in self.kpt_u:
            kpt.C_nM = self.bd.empty(self.setups.nao, dtype=self.dtype)
            for myn, C_M in enumerate(kpt.C_nM):
                n = self.bd.global_index(myn)
                C_M[:] = reader.get('WaveFunctionCoefficients', kpt.s, kpt.k,
                                    n)

    def estimate_memory(self, mem):
        nq = len(self.kd.ibzk_qc)
        nao = self.setups.nao
        ni_total = sum([setup.ni for setup in self.setups])
        itemsize = mem.itemsize[self.dtype]
        mem.subnode('C [qnM]', nq * self.bd.mynbands * nao * itemsize)
        nM1, nM2 = self.ksl.get_overlap_matrix_shape()
        mem.subnode('S, T [2 x qmm]', 2 * nq * nM1 * nM2 * itemsize)
        mem.subnode('P [aqMi]', nq * nao * ni_total // self.gd.comm.size)
        self.tci.estimate_memory(mem.subnode('TCI'))
        self.basis_functions.estimate_memory(mem.subnode('BasisFunctions'))
        self.eigensolver.estimate_memory(mem.subnode('Eigensolver'),
                                         self.dtype)