def intYdYdphi_ey(l1, m1, l2, m2): """Calculates:: pi 2pi / / * -1 d Y(u,v) A = | | Y (u,v) sin(u)*cos(v) --- l'm' sin(u) dv du LL' / / lm dv 0 0 where u = theta and v = phi in the usual notation. Note that the result is only non-zero if `|l1-l2|` is odd and `|m1-m2|` = 1 (stricter rule applies). """ if abs(l1-l2) % 2 != 1 or abs(m1-m2) != 1: return 0.0 scale = C(l1,m1)*C(l2,m2)*np.pi*1j*m2 if abs(m1) == abs(m2)+1 and l1 > l2: # and (l1-l2)%2 == 1 which is always true return scale*2*lmfact(l2,m2) elif abs(m1) == abs(m2)-1 and l1 < l2: # and (l2-l1)%2 == 1 which is always true return scale*2*lmfact(l1,m1) else: return 0.0
import numpy as np from gpaw.sphere import lmfact # Highest l for which associated Legendre polynomials are implemented lmax = 9 # Integral norm of the associated Legendre polynomials ilegendre = lambda l, m: 2. / (2. * l + 1.) * lmfact(l, m) def legendre(l, m, w): if m < 0 or l < m: return np.zeros_like(w) if (l, m) == (0, 0): return np.ones_like(w) elif (l, m) == (1, 0): return w.copy() elif (l, m) == (1, 1): return (1 - w**2)**0.5 elif (l, m) == (2, 0): return 1.5 * w**2 - 0.5 elif (l, m) == (2, 1): return 3 * (1 - w**2)**0.5 * w elif (l, m) == (2, 2): return 3 * (1 - w**2) elif (l, m) == (3, 0): return 2.5 * w**3 - 1.5 * w elif (l, m) == (3, 1): return (1 - w**2)**0.5 * (7.5 * w**2 - 1.5) elif (l, m) == (3, 2):
import numpy as np from gpaw.utilities import fact from gpaw.sphere import lmfact from gpaw.sphere.legendre import ilegendre, legendre, dlegendre # Define the Heaviside function heaviside = lambda x: (1.0 + np.sign(x)) / 2.0 # Define spherical harmoncics and normalization coefficient C = lambda l, m: ((2. * l + 1.) / (4 * np.pi * lmfact(l, m)))**0.5 def Y(l, m, theta, phi): if m == 0: return C(l, m) * legendre(l, abs(m), np.cos(theta)) elif m > 0: return C(l, m) * legendre(l, abs(m), np.cos(theta)) * np.cos( m * phi) * 2**0.5 else: return C(l, m) * legendre(l, abs(m), np.cos(theta)) * np.sin( abs(m) * phi) * 2**0.5 # Define theta-derivative of spherical harmoncics def dYdtheta(l, m, theta, phi): if m == 0: return C(l, m) * dlegendre(l, abs(m), np.cos(theta)) elif m > 0: return C(l, m) * dlegendre(l, abs(m), np.cos(theta)) * np.cos( m * phi) * 2**0.5
import numpy as np from gpaw.utilities import fact from gpaw.sphere import lmfact from gpaw.sphere.legendre import ilegendre, legendre, dlegendre # Define the Heaviside function heaviside = lambda x: (1.0+np.sign(x))/2.0 # Define spherical harmoncics and normalization coefficient C = lambda l,m: ((2.*l+1.)/(4*np.pi*lmfact(l,m)))**0.5 def Y(l,m,theta,phi): if m == 0: #return _Y(l,m,theta,phi) return C(l,m)*legendre(l,abs(m),np.cos(theta)) elif m > 0: #return (-1)**m*np.real(_Y(l,abs(m),theta,phi))*2**0.5 #return (-1)**m*(_Y(l,m,theta,phi)+_Y(l,m,theta,phi).conj())/2**0.5 #return (-1)**m*(_Y(l,m,theta,phi)+(-1)**m*_Y(l,-m,theta,phi))/2**0.5 #return (-1)**m*_C(l,m)*legendre(l,abs(m),np.cos(theta))*np.cos(m*phi)*2**0.5 return C(l,m)*legendre(l,abs(m),np.cos(theta))*np.cos(m*phi)*2**0.5 else: #return (-1)**m*np.imag(_Y(l,abs(m),theta,phi))*2**0.5 #return (-1)**m*(_Y(l,abs(m),theta,phi)-_Y(l,abs(m),theta,phi).conj())/(2**0.5*1j) #return (-1)**m*(_Y(l,abs(m),theta,phi)-(-1)**abs(m)*_Y(l,-abs(m),theta,phi))/(2**0.5*1j) #return -_C(l,m)*legendre(l,abs(m),np.cos(theta))*np.sin(m*phi)*2**0.5 return -C(l,m)*legendre(l,abs(m),np.cos(theta))*np.sin(m*phi)*2**0.5 # Define theta-derivative of spherical harmoncics
import numpy as np from gpaw.sphere import lmfact # Highest l for which associated Legendre polynomials are implemented lmax = 9 # Integral norm of the associated Legendre polynomials ilegendre = lambda l,m: 2./(2.*l+1.)*lmfact(l,m) def legendre(l, m, w): if m < 0 or l < m: return np.zeros_like(w) if (l,m) == (0,0): return np.ones_like(w) elif (l,m) == (1,0): return w.copy() elif (l,m) == (1,1): return (1-w**2)**0.5 elif (l,m) == (2,0): return 1.5*w**2-0.5 elif (l,m) == (2,1): return 3*(1-w**2)**0.5*w elif (l,m) == (2,2): return 3*(1-w**2) elif (l,m) == (3,0): return 2.5*w**3-1.5*w elif (l,m) == (3,1): return (1-w**2)**0.5*(7.5*w**2-1.5) elif (l,m) == (3,2):
import numpy as np from gpaw.utilities import fact from gpaw.sphere import lmfact from gpaw.sphere.legendre import ilegendre, legendre, dlegendre # Define the Heaviside function heaviside = lambda x: (1.0+np.sign(x))/2.0 # Define spherical harmoncics and normalization coefficient C = lambda l,m: (-1)**((m+abs(m))//2)*((2.*l+1.)/(4*np.pi*lmfact(l,m)))**0.5 Y = lambda l,m,theta,phi: C(l,m)*legendre(l,abs(m),np.cos(theta))*np.exp(1j*m*phi) # Define theta-derivative of spherical harmoncics dYdtheta = lambda l,m,theta,phi: C(l,m)*dlegendre(l,abs(m),np.cos(theta))*np.exp(1j*m*phi) # Define phi-derivative of spherical harmoncics dYdphi = lambda l,m,theta,phi: 1j*m*C(l,m)*legendre(l,abs(m),np.cos(theta))*np.exp(1j*m*phi) # ------------------------------------------------------------------- def intYY(l1, m1, l2, m2): """Calculates:: pi 2pi / / * A = | | Y (u,v) Y (u,v) sin(u) dv du LL' / / lm l'm' 0 0
from math import factorial as fact import numpy as np from gpaw.sphere import lmfact from gpaw.sphere.legendre import ilegendre, legendre, dlegendre # Define the Heaviside function heaviside = lambda x: (1.0+np.sign(x))/2.0 # Define spherical harmoncics and normalization coefficient C = lambda l,m: (-1)**((m+abs(m))//2)*((2.*l+1.)/(4*np.pi*lmfact(l,m)))**0.5 Y = lambda l,m,theta,phi: C(l,m)*legendre(l,abs(m),np.cos(theta))*np.exp(1j*m*phi) # Define theta-derivative of spherical harmoncics dYdtheta = lambda l,m,theta,phi: C(l,m)*dlegendre(l,abs(m),np.cos(theta))*np.exp(1j*m*phi) # Define phi-derivative of spherical harmoncics dYdphi = lambda l,m,theta,phi: 1j*m*C(l,m)*legendre(l,abs(m),np.cos(theta))*np.exp(1j*m*phi) # ------------------------------------------------------------------- def intYY(l1, m1, l2, m2): """Calculates:: pi 2pi / / * A = | | Y (u,v) Y (u,v) sin(u) dv du LL' / / lm l'm' 0 0 where u = theta and v = phi in the usual notation. Note that the result
import numpy as np from gpaw.utilities import fact from gpaw.sphere import lmfact from gpaw.sphere.legendre import ilegendre, legendre, dlegendre # Define the Heaviside function heaviside = lambda x: (1.0 + np.sign(x)) / 2.0 # Define spherical harmoncics and normalization coefficient C = lambda l, m: (-1)**((m + abs(m)) // 2) * ((2. * l + 1.) / (4 * np.pi * lmfact(l, m)))**0.5 Y = lambda l, m, theta, phi: C(l, m) * legendre(l, abs(m), np.cos(theta) ) * np.exp(1j * m * phi) # Define theta-derivative of spherical harmoncics dYdtheta = lambda l, m, theta, phi: C(l, m) * dlegendre( l, abs(m), np.cos(theta)) * np.exp(1j * m * phi) # Define phi-derivative of spherical harmoncics dYdphi = lambda l, m, theta, phi: 1j * m * C(l, m) * legendre( l, abs(m), np.cos(theta)) * np.exp(1j * m * phi) # ------------------------------------------------------------------- def intYY(l1, m1, l2, m2): """Calculates:: pi 2pi / / *