Example #1
0
def test_prior_mll():
    """
    Test that the MLL evaluation works with priors attached to the parameter values.
    """
    key = jr.PRNGKey(123)
    x = jnp.sort(jr.uniform(key, minval=-5.0, maxval=5.0, shape=(100, 1)),
                 axis=0)
    f = lambda x: jnp.sin(jnp.pi * x) / (jnp.pi * x)
    y = f(x) + jr.normal(key, shape=x.shape) * 0.1
    D = Dataset(X=x, y=y)
    posterior = Prior(kernel=RBF()) * Gaussian()

    params = initialise(posterior)
    config = get_defaults()
    constrainer, unconstrainer = build_all_transforms(params.keys(), config)
    params = unconstrainer(params)
    print(params)

    mll = marginal_ll(posterior, transform=constrainer)

    priors = {
        "lengthscale": tfd.Gamma(1.0, 1.0),
        "variance": tfd.Gamma(2.0, 2.0),
        "obs_noise": tfd.Gamma(2.0, 2.0),
    }
    mll_eval = mll(params, D)
    mll_eval_priors = mll(params, D, priors)

    assert pytest.approx(mll_eval) == jnp.array(-103.28180663)
    assert pytest.approx(mll_eval_priors) == jnp.array(-105.509218857)
Example #2
0
def test_prior_random_variable(n):
    f = Prior(kernel=RBF())
    sample_points = jnp.linspace(-1.0, 1.0, num=n).reshape(-1, 1)
    D = Dataset(X=sample_points)
    params = initialise(RBF())
    rv = random_variable(f, params, D)
    assert isinstance(rv, tfd.MultivariateNormalFullCovariance)
Example #3
0
def test_prior_sample_array(n, n_sample):
    key = jr.PRNGKey(123)
    f = Prior(kernel=RBF())
    sample_points = jnp.linspace(-1.0, 1.0, num=n).reshape(-1, 1)
    D = Dataset(X = sample_points)
    params = initialise(RBF())
    samples = sample(key, f, params, D, n_samples=n_sample)
    assert samples.shape == (n_sample, sample_points.shape[0])
Example #4
0
def test_posterior_sample(n, n_sample):
    key = jr.PRNGKey(123)
    f = Prior(kernel=RBF()) * Gaussian()
    x = jnp.linspace(-1.0, 1.0, 10).reshape(-1, 1)
    y = jnp.sin(x)
    D = Dataset(X=x, y=y)
    sample_points = jnp.linspace(-1.0, 1.0, num=n).reshape(-1, 1)
    params = initialise(f)
    rv = random_variable(f, params, D)(sample_points)
    samples = sample(key, rv, n_samples=n_sample)
    assert samples.shape == (n_sample, sample_points.shape[0])
Example #5
0
def test_posterior_random_variable(n):
    f = Prior(kernel=RBF()) * Gaussian()
    x = jnp.linspace(-1.0, 1.0, 10).reshape(-1, 1)
    y = jnp.sin(x)
    D = Dataset(X=x, y=y)
    sample_points = jnp.linspace(-1.0, 1.0, num=n).reshape(-1, 1)
    params = initialise(f)
    rv = random_variable(f, params, D)
    assert isinstance(rv, Callable)
    fstar = rv(sample_points)
    assert isinstance(fstar, tfd.MultivariateNormalFullCovariance)
Example #6
0
def test_non_conjugate_variance():
    key = jr.PRNGKey(123)
    x = jnp.sort(jr.uniform(key, shape=(10, 1), minval=-1.0, maxval=1.0), axis=0)
    y = 0.5 * jnp.sign(jnp.cos(3 * x + jr.normal(key, shape=x.shape) * 0.05)) + 0.5
    D = Dataset(X=x, y=y)
    xtest = jnp.linspace(-1.05, 1.05, 50).reshape(-1, 1)

    posterior = Prior(kernel=RBF()) * Bernoulli()
    params = initialise(posterior, x.shape[0])

    varf = variance(posterior, params, D)
    sigma = varf(xtest)
    assert sigma.shape == (xtest.shape[0],)
Example #7
0
def test_conjugate_variance():
    key = jr.PRNGKey(123)
    x = jr.uniform(key, shape=(20, 1), minval=-3.0, maxval=3.0)
    y = jnp.sin(x)
    D = Dataset(X=x, y=y)

    posterior = Prior(kernel=RBF()) * Gaussian()
    params = initialise(posterior)

    xtest = jnp.linspace(-3.0, 3.0, 30).reshape(-1, 1)
    varf = variance(posterior, params, D)
    sigma = varf(xtest)
    assert sigma.shape == (xtest.shape[0], xtest.shape[0])
Example #8
0
def test_non_conjugate():
    posterior = Prior(kernel=RBF()) * Bernoulli()
    n = 20
    x = jnp.linspace(-1.0, 1.0, n).reshape(-1, 1)
    y = jnp.sin(x)
    D = Dataset(X=x, y=y)
    params = initialise(posterior, 20)
    config = get_defaults()
    unconstrainer, constrainer = build_all_transforms(params.keys(), config)
    params = unconstrainer(params)
    mll = marginal_ll(posterior, transform=constrainer)
    assert isinstance(mll, Callable)
    neg_mll = marginal_ll(posterior, transform=constrainer, negative=True)
    assert neg_mll(params, D) == jnp.array(-1.0) * mll(params, D)
Example #9
0
def test_spectral_sample():
    key = jr.PRNGKey(123)
    M = 10
    x = jnp.linspace(-1.0, 1.0, 20).reshape(-1, 1)
    y = jnp.sin(x)
    D = Dataset(X=x, y=y)
    sample_points = jnp.linspace(-1.0, 1.0, num=50).reshape(-1, 1)
    kernel = to_spectral(RBF(), M)
    post = Prior(kernel=kernel) * Gaussian()
    params = initialise(key, post)
    sparams = {"basis_fns": params["basis_fns"]}
    del params["basis_fns"]
    posterior_rv = random_variable(post, params, D, static_params=sparams)(sample_points)
    assert isinstance(posterior_rv, tfd.Distribution)
    assert isinstance(posterior_rv, tfd.MultivariateNormalFullCovariance)
Example #10
0
def test_non_conjugate_rv(n):
    key = jr.PRNGKey(123)
    f = posterior = Prior(kernel=RBF()) * Bernoulli()
    x = jnp.sort(jr.uniform(key, shape=(n, 1), minval=-1.0, maxval=1.0), axis=0)
    y = 0.5 * jnp.sign(jnp.cos(3 * x + jr.normal(key, shape=x.shape) * 0.05)) + 0.5
    D = Dataset(X=x, y=y)

    sample_points = jnp.linspace(-1.0, 1.0, num=n).reshape(-1, 1)

    hyperparams = {"lengthscale": jnp.array([1.0]), "variance": jnp.array([1.0])}
    params = complete(hyperparams, posterior, x.shape[0])
    rv = random_variable(f, params, D)
    assert isinstance(rv, Callable)
    fstar = rv(sample_points)
    assert isinstance(fstar, tfd.ProbitBernoulli)
Example #11
0
def test_spectral():
    key = jr.PRNGKey(123)
    kern = to_spectral(RBF(), 10)
    posterior = Prior(kernel=kern) * Gaussian()
    x = jnp.linspace(-1.0, 1.0, 20).reshape(-1, 1)
    y = jnp.sin(x)
    D = Dataset(X=x, y=y)
    params = initialise(key, posterior)
    config = get_defaults()
    unconstrainer, constrainer = build_all_transforms(params.keys(), config)
    params = unconstrainer(params)
    mll = marginal_ll(posterior, transform=constrainer)
    assert isinstance(mll, Callable)
    neg_mll = marginal_ll(posterior, transform=constrainer, negative=True)
    assert neg_mll(params, D) == jnp.array(-1.0) * mll(params, D)
    nmll = neg_mll(params, D)
    assert nmll.shape == ()