MODEL, OUTPUT_DIR, TRAIN_STEPS, TITLE = parse_arguments() #For Mark's machine os.environ["CUDA_VISIBLE_DEVICES"] = "1,2" if not os.path.isdir(os.path.join("models", MODEL)): print(f"Downloading {MODEL} model...") gpt2.download_gpt2( model_name=MODEL ) # model is saved into current directory under /models/124M/ config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = gpt2.start_tf_sess() #gpt2.load_gpt2(sess, model_name = MODEL) # Train Topic generator print("TRAINING TOPIC GENERATOR...") if TRAIN_STEPS > 0: gpt2.finetune(sess, dataset=TRAIN_TOPIC_PATH, model_name=MODEL, steps=TRAIN_STEPS, checkpoint_dir="topic_gen_chkpts", multi_gpu=True, val_dataset=VALID_TOPIC_PATH, val_every=10) #gpt2.load_gpt2(sess, model_name = MODEL)
from gpt_2 import finetune, start_tf_sess import argparse if __name__ == "__main__": parser = argparse.ArgumentParser( description='TensorFlow Haiku GPT-2 Finetuned Language Model') parser.add_argument('--dataset', type=str, help='location of the data corpus') parser.add_argument('--model_name', type=str, default='models/117M', help='Pretrained model path') parser.add_argument('--steps', type=int, default=1000, help='No of epochs to train during finetuning') args = parser.parse_args() sess = start_tf_sess() finetune(sess, dataset=args.dataset, model_name=args.model_name, steps=args.steps, restore_from='fresh', run_name='run1', print_every=100, sample_every=500, save_every=500) print("Finetuning completed!!!")
import asyncio import discord from discord.ext import commands import os, datetime, numpy as np, json, re, sys, time import gpt_2, tensorflow as tf import re sess = gpt_2.start_tf_sess() print(gpt_2.load_gpt2(sess)) checkpoint_path = os.path.join('models', '345M') enc = gpt_2.encoder.get_encoder(checkpoint_path) hparams = gpt_2.model.default_hparams() with open(os.path.join(checkpoint_path, 'hparams.json')) as f: hparams.override_from_dict(json.load(f)) context = tf.compat.v1.placeholder(tf.int32, [1, None]) bot = commands.Bot(command_prefix='none') f = open("bot.txt") bot_token = f.read() emojis = dict() imitates = dict() session = dict() messages = dict() messagequeue = dict() tf_sample = gpt_2.sample.sample_sequence(hparams=hparams, length=728,