Example #1
0
def finetune(sess,
             dataset,
             steps=-1,
             model_name='117M',
             combine=50000,
             batch_size=1,
             learning_rate=0.0001,
             accumulate_gradients=5,
             restore_from='latest',
             run_name='run1',
             sample_every=100,
             sample_length=1023,
             sample_num=1,
             save_every=1000,
             print_every=1,
             max_checkpoints=1,
             use_memory_saving_gradients=False,
             only_train_transformer_layers=False,
             model_load=False):
    """Finetunes the model on the given dataset.

    Adapted from https://github.com/nshepperd/gpt-2/blob/finetuning/train.py.
    See that file for parameter definitions.
    """

    CHECKPOINT_DIR = 'checkpoint'
    SAMPLE_DIR = 'samples'

    checkpoint_path = os.path.join(CHECKPOINT_DIR, run_name)

    def maketree(path):
        try:
            os.makedirs(path)
        except:
            pass

    maketree(checkpoint_path)
    if not model_load:
        for file in ['hparams.json', 'encoder.json', 'vocab.bpe']:
            shutil.copyfile(os.path.join('models', model_name, file),
                            os.path.join(checkpoint_path, file))

    enc = encoder.get_encoder(checkpoint_path)
    hparams = model.default_hparams()
    with open(os.path.join(checkpoint_path, 'hparams.json')) as f:
        hparams.override_from_dict(json.load(f))

    if sample_length > hparams.n_ctx:
        raise ValueError("Can't get samples longer than window size: %s" %
                         hparams.n_ctx)

    if model_name != '117M':
        use_memory_saving_gradients = True
        only_train_transformer_layers = True
        accumulate_gradients = 1

    context = tf.placeholder(tf.int32, [batch_size, None])
    output = model.model(hparams=hparams, X=context)
    loss = tf.reduce_mean(
        tf.nn.sparse_softmax_cross_entropy_with_logits(
            labels=context[:, 1:], logits=output['logits'][:, :-1]))

    tf_sample = sample.sample_sequence(hparams=hparams,
                                       length=sample_length,
                                       context=context,
                                       batch_size=batch_size,
                                       temperature=1.0,
                                       top_k=40)

    all_vars = [v for v in tf.trainable_variables() if 'model' in v.name]
    train_vars = [v for v in all_vars if '/h' in v.name
                  ] if only_train_transformer_layers else all_vars
    if accumulate_gradients > 1:
        if use_memory_saving_gradients:
            exit(
                "Memory saving gradients are not implemented for gradient accumulation yet."
            )
        opt = AccumulatingOptimizer(
            opt=tf.train.AdamOptimizer(learning_rate=learning_rate),
            var_list=train_vars)
        opt_reset = opt.reset()
        opt_compute = opt.compute_gradients(loss)
        opt_apply = opt.apply_gradients()
        summary_loss = tf.summary.scalar('loss', opt_apply)
    else:
        opt = tf.train.AdamOptimizer(learning_rate=learning_rate)
        if use_memory_saving_gradients:
            opt_grads = memory_saving_gradients.gradients(loss, train_vars)
        else:
            opt_grads = tf.gradients(loss, train_vars)
        opt_grads = list(zip(opt_grads, train_vars))
        opt_apply = opt.apply_gradients(opt_grads)
        summary_loss = tf.summary.scalar('loss', loss)

    summary_log = tf.summary.FileWriter(checkpoint_path)

    saver = tf.train.Saver(var_list=all_vars, max_to_keep=max_checkpoints)
    sess.run(tf.global_variables_initializer())

    if restore_from == 'latest':
        ckpt = tf.train.latest_checkpoint(checkpoint_path)
        if ckpt is None:
            # Get fresh GPT weights if new run.
            ckpt = tf.train.latest_checkpoint(
                os.path.join('models', model_name))
    elif restore_from == 'fresh':
        ckpt = tf.train.latest_checkpoint(os.path.join('models', model_name))
    else:
        ckpt = tf.train.latest_checkpoint(restore_from)
    print('Loading checkpoint', ckpt)
    saver.restore(sess, ckpt)

    if model_load:
        return

    print('Loading dataset...')
    chunks = load_dataset(enc, dataset, combine)
    data_sampler = Sampler(chunks)
    print('dataset has', data_sampler.total_size, 'tokens')
    print('Training...')

    counter = 1
    counter_path = os.path.join(checkpoint_path, 'counter')
    if os.path.exists(counter_path) and restore_from == 'latest':
        # Load the step number if we're resuming a run
        # Add 1 so we don't immediately try to save again
        with open(counter_path, 'r') as fp:
            counter = int(fp.read()) + 1
    counter_base = counter

    def save():
        maketree(checkpoint_path)
        print('Saving',
              os.path.join(checkpoint_path, 'model-{}').format(counter - 1))
        saver.save(sess,
                   os.path.join(checkpoint_path, 'model'),
                   global_step=counter - 1)
        with open(counter_path, 'w') as fp:
            fp.write(str(counter - 1) + '\n')

    def generate_samples():
        context_tokens = data_sampler.sample(1)
        all_text = []
        index = 0
        while index < sample_num:
            out = sess.run(tf_sample,
                           feed_dict={context: batch_size * [context_tokens]})
            for i in range(min(sample_num - index, batch_size)):
                text = enc.decode(out[i])
                text = '======== SAMPLE {} ========\n{}\n'.format(
                    index + 1, text)
                all_text.append(text)
                index += 1
        print(text)
        maketree(os.path.join(SAMPLE_DIR, run_name))
        with open(
                os.path.join(SAMPLE_DIR, run_name,
                             'samples-{}').format(counter), 'w') as fp:
            fp.write('\n'.join(all_text))

    def sample_batch():
        return [data_sampler.sample(1024) for _ in range(batch_size)]

    avg_loss = (0.0, 0.0)
    start_time = time.time()

    try:
        while True:
            if steps > 0 and counter == (counter_base + steps):
                save()
                return
            if (counter - 1) % save_every == 0 and counter > 1:
                save()
            if (counter - 1) % sample_every == 0 and counter > 1:
                generate_samples()

            if accumulate_gradients > 1:
                sess.run(opt_reset)
                for _ in range(accumulate_gradients):
                    sess.run(opt_compute, feed_dict={context: sample_batch()})
                (v_loss, v_summary) = sess.run((opt_apply, summary_loss))
            else:
                (_, v_loss, v_summary) = sess.run(
                    (opt_apply, loss, summary_loss),
                    feed_dict={context: sample_batch()})

            summary_log.add_summary(v_summary, counter)

            if counter % print_every == 0:
                avg_loss = (avg_loss[0] * 0.99 + v_loss,
                            avg_loss[1] * 0.99 + 1.0)

                print(
                    '[{counter} | {time:2.2f}] loss={loss:2.2f} avg={avg:2.2f}'
                    .format(counter=counter,
                            time=time.time() - start_time,
                            loss=v_loss,
                            avg=avg_loss[0] / avg_loss[1]))

            counter += 1
    except KeyboardInterrupt:
        print('interrupted')
        save()
Example #2
0
def finetune(sess,
             dataset,
             steps=-1,
             model_name='124M',
             model_dir='models',
             combine=50000,
             batch_size=1,
             learning_rate=0.0001,
             accumulate_gradients=5,
             restore_from='latest',
             run_name='run1',
             checkpoint_dir='checkpoint',
             sample_every=100,
             sample_length=1023,
             sample_num=1,
             multi_gpu=False,
             save_every=1000,
             print_every=1,
             max_checkpoints=1,
             use_memory_saving_gradients=False,
             only_train_transformer_layers=False,
             optimizer='adam',
             overwrite=False):
    """Finetunes the model on the given dataset.

    Adapted from https://github.com/nshepperd/gpt-2/blob/finetuning/train.py.
    See that file for parameter definitions.
    """

    assert model_name not in [
        '774M', '1558M'
    ] or multi_gpu, "[ERROR] Currently, a modern single GPU cannot finetune the 774M GPT-2 model or larger."

    SAMPLE_DIR = 'samples'

    checkpoint_path = os.path.join(checkpoint_dir, run_name)

    def maketree(path):
        try:
            os.makedirs(path)
        except:
            pass

    maketree(checkpoint_path)
    files = [f for f in os.listdir(checkpoint_path)]
    for file in ['hparams.json', 'encoder.json', 'vocab.bpe']:
        try:
            shutil.copyfile(os.path.join(model_dir, model_name, file),
                            os.path.join(checkpoint_path, file))
        except FileNotFoundError as fnf_error:
            print(
                "[ERROR] You need to download the GPT-2 model first via download_gpt2()"
            )
            raise (fnf_error)

    enc = encoder.get_encoder(checkpoint_path)
    hparams = model.default_hparams()
    with open(os.path.join(checkpoint_path, 'hparams.json')) as f:
        hparams.override_from_dict(json.load(f))

    if sample_length > hparams.n_ctx:
        raise ValueError(
            "[ERROR] Can't get samples longer than window size: %s" %
            hparams.n_ctx)

    if model_name not in ['117M', '124M']:
        use_memory_saving_gradients = True
        only_train_transformer_layers = True
        accumulate_gradients = 1

    context = tf.compat.v1.placeholder(tf.int32, [batch_size, None])
    gpus = []

    if multi_gpu:
        gpus = get_available_gpus()

    output = model.model(hparams=hparams, X=context, gpus=gpus)
    loss = tf.reduce_mean(
        input_tensor=tf.nn.sparse_softmax_cross_entropy_with_logits(
            labels=context[:, 1:], logits=output['logits'][:, :-1]))

    tf_sample = sample.sample_sequence(hparams=hparams,
                                       length=sample_length,
                                       context=context,
                                       batch_size=batch_size,
                                       temperature=1.0,
                                       top_k=40)

    all_vars = [
        v for v in tf.compat.v1.trainable_variables() if 'model' in v.name
    ]
    train_vars = [v for v in all_vars if '/h' in v.name
                  ] if only_train_transformer_layers else all_vars

    if optimizer == 'adam':
        opt = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate)
    elif optimizer == 'sgd':
        opt = tf.compat.v1.train.GradientDescentOptimizer(
            learning_rate=learning_rate)

    if accumulate_gradients > 1:
        if use_memory_saving_gradients:
            exit(
                "[INFO] Memory saving gradients are not implemented for gradient accumulation yet."
            )
        opt = AccumulatingOptimizer(opt=opt, var_list=train_vars)
        opt_reset = opt.reset()
        opt_compute = opt.compute_gradients(loss)
        opt_apply = opt.apply_gradients()
        summary_loss = tf.compat.v1.summary.scalar('loss', opt_apply)
    else:
        if use_memory_saving_gradients:
            opt_grads = memory_saving_gradients.gradients(loss, train_vars)
        else:
            opt_grads = tf.gradients(ys=loss, xs=train_vars)
        opt_grads = list(zip(opt_grads, train_vars))
        opt_apply = opt.apply_gradients(opt_grads)
        summary_loss = tf.compat.v1.summary.scalar('loss', loss)

    summaries = [summary_loss]
    summary_op = tf.summary.merge(summaries)
    summary_writer = tf.compat.v1.summary.FileWriter(checkpoint_path,
                                                     sess.graph)

    saver = tf.compat.v1.train.Saver(var_list=all_vars,
                                     max_to_keep=max_checkpoints)
    sess.run(tf.compat.v1.global_variables_initializer())

    if restore_from == 'latest':
        ckpt = tf.train.latest_checkpoint(checkpoint_path)
        if ckpt is None:
            # Get fresh GPT weights if new run.
            ckpt = tf.train.latest_checkpoint(
                os.path.join(model_dir, model_name))
    elif restore_from == 'fresh':
        ckpt = tf.train.latest_checkpoint(os.path.join(model_dir, model_name))
    else:
        ckpt = tf.train.latest_checkpoint(restore_from)
    print('[INFO] Loading checkpoint', ckpt)
    saver.restore(sess, ckpt)

    print('[INFO] Loading dataset...')
    chunks = load_dataset(enc, dataset, combine)
    data_sampler = Sampler(chunks)
    print('[INFO] dataset has', data_sampler.total_size, 'tokens')
    print('[INFO] Training...')

    counter = 1
    counter_path = os.path.join(checkpoint_path, 'counter')
    if os.path.exists(counter_path) and restore_from == 'latest':
        # Load the step number if we're resuming a run
        # Add 1 so we don't immediately try to save again
        with open(counter_path, 'r') as fp:
            counter = int(fp.read()) + 1
    counter_base = counter

    def save():
        maketree(checkpoint_path)
        print('[INFO] Saving',
              os.path.join(checkpoint_path, 'model-{}').format(counter - 1))
        saver.save(sess,
                   os.path.join(checkpoint_path, 'model'),
                   global_step=counter - 1)
        with open(counter_path, 'w') as fp:
            fp.write(str(counter - 1) + '\n')

    def generate_samples(header=True):
        context_tokens = data_sampler.sample(1)
        all_text = []
        index = 0
        while index < sample_num:
            out = sess.run(tf_sample,
                           feed_dict={context: batch_size * [context_tokens]})
            for i in range(min(sample_num - index, batch_size)):
                text = enc.decode(out[i])
                if header:
                    text = '======== SAMPLE {} ========\n{}\n'.format(
                        index + 1, text)
                all_text.append(text)
                index += 1
        print(text)
        maketree(os.path.join(SAMPLE_DIR, run_name))
        with open(
                os.path.join(SAMPLE_DIR, run_name,
                             'samples-{}').format(counter), 'w') as fp:
            fp.write('\n'.join(all_text))

        return text

    def sample_batch(sample_size=1024):
        return [data_sampler.sample(sample_size) for _ in range(batch_size)]

    if overwrite and restore_from == 'latest':
        for file in files:
            if file.startswith('model') or file.startswith('events'):
                os.remove(os.path.join(checkpoint_path, file))
        save()

    avg_loss = (0.0, 0.0)
    start_time = time.time()

    best_loss = 1000.00

    if steps:
        steps = int(steps)

    try:
        while True:
            t = time.time() - start_time

            if accumulate_gradients > 1:
                sess.run(opt_reset)
                for _ in range(accumulate_gradients):
                    sess.run(opt_compute, feed_dict={context: sample_batch()})
                (v_loss, v_summary) = sess.run((opt_apply, summary_op))
            else:
                (_, v_loss, v_summary) = sess.run(
                    (opt_apply, loss, summary_op),
                    feed_dict={context: sample_batch()})

            monitoring.push_metric('loss', v_loss, counter, t)
            summary_writer.add_summary(v_summary, counter)

            if steps > 0 and counter == (counter_base + steps):
                save()
                return
            if (counter - 1) % save_every == 0 and counter > 1:
                save()
                sample_text = generate_samples(False)
                summary_sample = tf.compat.v1.summary.text(
                    'generated_sample', tf.convert_to_tensor(sample_text))
                text = sess.run(summary_sample)
                summary_writer.add_summary(text, counter)

                monitoring.push_text('generated_text', sample_text, counter,
                                     v_loss, t)

            if v_loss < best_loss and v_loss > 1.00:
                best_loss = v_loss
                loss_text = generate_samples(False)
                loss_sample_text = "===== LOSS : " + str(
                    best_loss) + "=====" + loss_text
                summary_loss_sample = tf.compat.v1.summary.text(
                    'best_loss_sample', tf.convert_to_tensor(loss_sample_text))
                loss_text_ = sess.run(summary_loss_sample)
                summary_writer.add_summary(loss_text_, counter)
                monitoring.push_text('best_loss_text', loss_text, counter,
                                     best_loss, t)
                monitoring.push_metric('best_loss', best_loss, counter, t)

            if counter % print_every == 0:
                avg_loss = (avg_loss[0] * 0.99 + v_loss,
                            avg_loss[1] * 0.99 + 1.0)

                monitoring.push_metric('avg_loss', avg_loss[0] / avg_loss[1],
                                       counter, t)
                print(
                    '[{counter} | {time:2.2f}] loss={loss:2.2f} avg={avg:2.2f}'
                    .format(counter=counter,
                            time=t,
                            loss=v_loss,
                            avg=avg_loss[0] / avg_loss[1]))

            counter += 1
    except KeyboardInterrupt:
        print('[STOP] interrupted')
        save()
Example #3
0
def one_lr_cycle(sess,
                 dataset,
                 steps=10000,
                 model_name='117M',
                 combine=50000,
                 batch_size=1,
                 intial_lr=1e-10,
                 final_lr=1,
                 accumulate_gradients=5,
                 restore_from='fresh',
                 run_name='run1',
                 max_checkpoints=1,
                 use_memory_saving_gradients=False,
                 only_train_transformer_layers=False,
                 overwrite=False):
    """Does one LR half-cycle from initial to final over steps iterations using CLR algorithm
    https://github.com/bckenstler/CLR

    Adapted from https://github.com/nshepperd/gpt-2/blob/finetuning/train.py.
    See that file for parameter definitions.
    """

    CHECKPOINT_DIR = 'checkpoint'

    checkpoint_path = os.path.join(CHECKPOINT_DIR, run_name)

    def maketree(path):
        try:
            os.makedirs(path)
        except:
            pass

    maketree(checkpoint_path)
    files = [f for f in os.listdir(checkpoint_path)]
    for file in ['hparams.json', 'encoder.json', 'vocab.bpe']:
        if file not in files:
            try:
                shutil.copyfile(os.path.join('models', model_name, file),
                                os.path.join(checkpoint_path, file))
            except FileNotFoundError as fnf_error:
                print(
                    "You need to download the GPT-2 model first via download_gpt2()"
                )
                raise (fnf_error)

    enc = encoder.get_encoder(checkpoint_path)
    hparams = model.default_hparams()
    with open(os.path.join(checkpoint_path, 'hparams.json')) as f:
        hparams.override_from_dict(json.load(f))

    if model_name != '117M':
        use_memory_saving_gradients = True
        only_train_transformer_layers = True
        accumulate_gradients = 1

    context = tf.placeholder(tf.int32, [batch_size, None])
    output = model.model(hparams=hparams, X=context)
    loss = tf.reduce_mean(
        tf.nn.sparse_softmax_cross_entropy_with_logits(
            labels=context[:, 1:], logits=output['logits'][:, :-1]))

    current_iter = 0
    learning_rate = tf.placeholder(tf.float32, shape=[])

    def get_lr():
        cycle = np.floor(1 + current_iter / (2 * steps))
        x = np.abs(current_iter / steps - 2 * cycle + 1)
        lr = intial_lr + (final_lr - intial_lr) * np.maximum(
            0, (1 - x))  # * scale_fn(x)
        return lr

    all_vars = [v for v in tf.trainable_variables() if 'model' in v.name]
    train_vars = [v for v in all_vars if '/h' in v.name
                  ] if only_train_transformer_layers else all_vars
    if accumulate_gradients > 1:
        if use_memory_saving_gradients:
            exit(
                "Memory saving gradients are not implemented for gradient accumulation yet."
            )
        opt = AccumulatingOptimizer(
            opt=tf.train.AdamOptimizer(learning_rate=learning_rate),
            var_list=train_vars)
        opt_reset = opt.reset()
        opt_compute = opt.compute_gradients(loss)
        opt_apply = opt.apply_gradients()
        summary_loss = tf.summary.scalar('loss', opt_apply)
    else:
        opt = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
        if use_memory_saving_gradients:
            opt_grads = memory_saving_gradients.gradients(loss, train_vars)
        else:
            opt_grads = tf.gradients(loss, train_vars)
        opt_grads = list(zip(opt_grads, train_vars))
        opt_apply = opt.apply_gradients(opt_grads)
        summary_loss = tf.summary.scalar('loss', loss)

    summary_log = tf.summary.FileWriter(checkpoint_path)

    saver = tf.train.Saver(var_list=all_vars, max_to_keep=max_checkpoints)
    sess.run(tf.global_variables_initializer())

    if restore_from == 'latest':
        ckpt = tf.train.latest_checkpoint(checkpoint_path)
        if ckpt is None:
            # Get fresh GPT weights if new run.
            ckpt = tf.train.latest_checkpoint(
                os.path.join('models', model_name))
    elif restore_from == 'fresh':
        ckpt = tf.train.latest_checkpoint(os.path.join('models', model_name))
    else:
        ckpt = tf.train.latest_checkpoint(restore_from)
    print('Loading checkpoint', ckpt)
    saver.restore(sess, ckpt)

    print('Loading dataset...')
    chunks = load_dataset(enc, dataset, combine)
    data_sampler = Sampler(chunks)
    print('dataset has', data_sampler.total_size, 'tokens')
    print('Training...')

    counter = 1
    counter_path = os.path.join(checkpoint_path, 'counter')
    if os.path.exists(counter_path) and restore_from == 'latest':
        # Load the step number if we're resuming a run
        # Add 1 so we don't immediately try to save again
        with open(counter_path, 'r') as fp:
            counter = int(fp.read()) + 1
    counter_base = counter

    def sample_batch():
        return [data_sampler.sample(1024) for _ in range(batch_size)]

    if overwrite and restore_from == 'latest':
        for file in files:
            if file.startswith('model') or file.startswith('events'):
                os.remove(os.path.join(checkpoint_path, file))

    start_time = time.time()

    try:
        while True:
            if steps > 0 and counter == (counter_base + steps):
                return
            if accumulate_gradients > 1:
                sess.run(opt_reset)
                for _ in range(accumulate_gradients):
                    sess.run(opt_compute,
                             feed_dict={
                                 context: sample_batch(),
                                 learning_rate: get_lr()
                             })
                (v_loss, v_summary) = sess.run((opt_apply, summary_loss))
            else:
                (_, v_loss, v_summary) = sess.run(
                    (opt_apply, loss, summary_loss),
                    feed_dict={
                        context: sample_batch(),
                        learning_rate: get_lr()
                    })

            summary_log.add_summary(v_summary, counter)

            print('[{counter} | {time:2.2f}] loss={loss:3.14f} lr={lr:2.14f}'.
                  format(counter=counter,
                         time=time.time() - start_time,
                         loss=v_loss,
                         lr=get_lr()))

            counter += 1
            current_iter += 1
    except KeyboardInterrupt:
        print('interrupted')
Example #4
0
def finetune(
    sess,
    dataset,
    steps=-1,
    model_name="124M",
    model_dir="models",
    combine=50000,
    batch_size=1,
    learning_rate=0.0001,
    accumulate_gradients=5,
    restore_from="latest",
    run_name="run1",
    checkpoint_dir="checkpoint",
    sample_every=100,
    sample_length=1023,
    sample_num=1,
    multi_gpu=False,
    save_every=1000,
    print_every=1,
    max_checkpoints=1,
    use_memory_saving_gradients=False,
    only_train_transformer_layers=False,
    optimizer="adam",
    overwrite=False,
):
    """Finetunes the model on the given dataset.

    Adapted from https://github.com/nshepperd/gpt-2/blob/finetuning/train.py.
    See that file for parameter definitions.
    """

    # assert model_name not in ['774M', '1558M'] or multi_gpu, "Currently, a modern single GPU cannot finetune the 774M GPT-2 model or larger."

    SAMPLE_DIR = "samples"

    checkpoint_path = os.path.join(checkpoint_dir, run_name)

    def maketree(path):
        try:
            os.makedirs(path)
        except FileExistsError:
            pass

    maketree(checkpoint_path)
    files = [f for f in os.listdir(checkpoint_path)]
    for file in ["hparams.json", "encoder.json", "vocab.bpe"]:
        try:
            shutil.copyfile(
                os.path.join(model_dir, model_name, file),
                os.path.join(checkpoint_path, file),
            )
        except FileNotFoundError as fnf_error:
            print(
                "You need to download the GPT-2 model first via download_gpt2()"
            )
            raise (fnf_error)

    enc = encoder.get_encoder(checkpoint_path)
    hparams = model.default_hparams()
    with open(os.path.join(checkpoint_path, "hparams.json")) as f:
        hparams.override_from_dict(json.load(f))

    if sample_length > hparams.n_ctx:
        raise ValueError("Can't get samples longer than window size: %s" %
                         hparams.n_ctx)

    if model_name not in ["117M", "124M"]:
        use_memory_saving_gradients = True
        only_train_transformer_layers = True
        accumulate_gradients = 1

    context = tf.compat.v1.placeholder(tf.int32, [batch_size, None])
    gpus = []

    if multi_gpu:
        gpus = get_available_gpus()

    output = model.model(hparams=hparams, X=context, gpus=gpus)
    loss = tf.reduce_mean(
        input_tensor=tf.nn.sparse_softmax_cross_entropy_with_logits(
            labels=context[:, 1:], logits=output["logits"][:, :-1]))

    tf_sample = sample.sample_sequence(
        hparams=hparams,
        length=sample_length,
        context=context,
        batch_size=batch_size,
        temperature=1.0,
        top_k=40,
    )

    all_vars = [
        v for v in tf.compat.v1.trainable_variables() if "model" in v.name
    ]
    train_vars = ([v for v in all_vars if "/h" in v.name]
                  if only_train_transformer_layers else all_vars)

    if optimizer == "adam":
        opt = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate)
    elif optimizer == "sgd":
        opt = tf.compat.v1.train.GradientDescentOptimizer(
            learning_rate=learning_rate)

    if accumulate_gradients > 1:
        if use_memory_saving_gradients:
            exit(
                "Memory saving gradients are not implemented for gradient accumulation yet."
            )
        opt = AccumulatingOptimizer(opt=opt, var_list=train_vars)
        opt_reset = opt.reset()
        opt_compute = opt.compute_gradients(loss)
        opt_apply = opt.apply_gradients()
        summary_loss = tf.compat.v1.summary.scalar("loss", opt_apply)
    else:
        if use_memory_saving_gradients:
            opt_grads = memory_saving_gradients.gradients(loss, train_vars)
        else:
            opt_grads = tf.gradients(ys=loss, xs=train_vars)
        opt_grads = list(zip(opt_grads, train_vars))
        opt_apply = opt.apply_gradients(opt_grads)
        summary_loss = tf.compat.v1.summary.scalar("loss", loss)

    summary_log = tf.compat.v1.summary.FileWriter(checkpoint_path)

    saver = tf.compat.v1.train.Saver(var_list=all_vars,
                                     max_to_keep=max_checkpoints)
    sess.run(tf.compat.v1.global_variables_initializer())

    if restore_from == "latest":
        ckpt = tf.train.latest_checkpoint(checkpoint_path)
        if ckpt is None:
            # Get fresh GPT weights if new run.
            ckpt = tf.train.latest_checkpoint(
                os.path.join(model_dir, model_name))
    elif restore_from == "fresh":
        ckpt = tf.train.latest_checkpoint(os.path.join(model_dir, model_name))
    else:
        ckpt = tf.train.latest_checkpoint(restore_from)
    print("Loading checkpoint", ckpt)
    saver.restore(sess, ckpt)

    print("Loading dataset...")
    chunks = load_dataset(enc, dataset, combine)
    data_sampler = Sampler(chunks)
    print("dataset has", data_sampler.total_size, "tokens")
    print("Training...")

    counter = 1
    counter_path = os.path.join(checkpoint_path, "counter")
    if os.path.exists(counter_path) and restore_from == "latest":
        # Load the step number if we're resuming a run
        # Add 1 so we don't immediately try to save again
        with open(counter_path, "r") as fp:
            counter = int(fp.read()) + 1
    counter_base = counter

    def save():
        maketree(checkpoint_path)
        print("Saving",
              os.path.join(checkpoint_path, "model-{}").format(counter - 1))
        saver.save(sess,
                   os.path.join(checkpoint_path, "model"),
                   global_step=counter - 1)
        with open(counter_path, "w") as fp:
            fp.write(str(counter - 1) + "\n")

    def generate_samples():
        context_tokens = data_sampler.sample(1)
        all_text = []
        index = 0
        while index < sample_num:
            out = sess.run(tf_sample,
                           feed_dict={context: batch_size * [context_tokens]})
            for i in range(min(sample_num - index, batch_size)):
                text = enc.decode(out[i])
                text = "======== SAMPLE {} ========\n{}\n".format(
                    index + 1, text)
                all_text.append(text)
                index += 1
        print(text)
        maketree(os.path.join(SAMPLE_DIR, run_name))
        with open(
                os.path.join(SAMPLE_DIR, run_name,
                             "samples-{}").format(counter), "w") as fp:
            fp.write("\n".join(all_text))

    def sample_batch():
        return [data_sampler.sample(1024) for _ in range(batch_size)]

    if overwrite and restore_from == "latest":
        for file in files:
            if file.startswith("model") or file.startswith("events"):
                os.remove(os.path.join(checkpoint_path, file))
        save()

    avg_loss = (0.0, 0.0)
    start_time = time.time()

    if steps:
        steps = int(steps)

    try:
        while True:
            if steps > 0 and counter == (counter_base + steps):
                save()
                return
            if (counter - 1) % save_every == 0 and counter > 1:
                save()
            if (counter - 1) % sample_every == 0 and counter > 1:
                generate_samples()

            if accumulate_gradients > 1:
                sess.run(opt_reset)
                for _ in range(accumulate_gradients):
                    sess.run(opt_compute, feed_dict={context: sample_batch()})
                (v_loss, v_summary) = sess.run((opt_apply, summary_loss))
            else:
                (_, v_loss, v_summary) = sess.run(
                    (opt_apply, loss, summary_loss),
                    feed_dict={context: sample_batch()})

            summary_log.add_summary(v_summary, counter)

            if counter % print_every == 0:
                avg_loss = (avg_loss[0] * 0.99 + v_loss,
                            avg_loss[1] * 0.99 + 1.0)

                print(
                    "[{counter} | {time:2.2f}] loss={loss:2.2f} avg={avg:2.2f}"
                    .format(
                        counter=counter,
                        time=time.time() - start_time,
                        loss=v_loss,
                        avg=avg_loss[0] / avg_loss[1],
                    ))

            counter += 1
    except KeyboardInterrupt:
        print("interrupted")
        save()
Example #5
0
def create_optimizer(loss,
                     init_lr,
                     num_train_steps,
                     num_warmup_steps,
                     use_tpu,
                     optimizer="lamb",
                     poly_power=1.0,
                     start_warmup_step=0,
                     use_memory_saving_gradients=False):
    """Creates an optimizer training op."""
    global_step = tf.train.get_or_create_global_step()

    learning_rate = tf.constant(value=init_lr, shape=[], dtype=tf.float32)

    # Implements linear decay of the learning rate.
    learning_rate = tf.train.polynomial_decay(
        learning_rate,
        global_step,
        num_train_steps,
        end_learning_rate=0.0,
        power=poly_power,
        cycle=False,
    )

    # Implements linear warmup. I.e., if global_step - start_warmup_step <
    # num_warmup_steps, the learning rate will be
    # `(global_step - start_warmup_step)/num_warmup_steps * init_lr`.
    if num_warmup_steps:
        tf.logging.info("++++++ warmup starts at step " +
                        str(start_warmup_step) + ", for " +
                        str(num_warmup_steps) + " steps ++++++")
        global_steps_int = tf.cast(global_step, tf.int32)
        start_warm_int = tf.constant(start_warmup_step, dtype=tf.int32)
        global_steps_int = global_steps_int - start_warm_int
        warmup_steps_int = tf.constant(num_warmup_steps, dtype=tf.int32)

        global_steps_float = tf.cast(global_steps_int, tf.float32)
        warmup_steps_float = tf.cast(warmup_steps_int, tf.float32)

        warmup_percent_done = global_steps_float / warmup_steps_float
        warmup_learning_rate = init_lr * warmup_percent_done

        is_warmup = tf.cast(global_steps_int < warmup_steps_int, tf.float32)
        learning_rate = (
            1.0 - is_warmup) * learning_rate + is_warmup * warmup_learning_rate

    # It is OK that you use this optimizer for finetuning, since this
    # is how the model was trained (note that the Adam m/v variables are NOT
    # loaded from init_checkpoint.)
    # It is OK to use AdamW in the finetuning even the model is trained by LAMB.
    # As report in the Bert pulic github, the learning rate for SQuAD 1.1 finetune
    # is 3e-5, 4e-5 or 5e-5. For LAMB, the users can use 3e-4, 4e-4,or 5e-4 for a
    # batch size of 64 in the finetune.
    if optimizer == "adamw":
        tf.logging.info("using adamw")
        optimizer = AdamWeightDecayOptimizer(
            learning_rate=learning_rate,
            weight_decay_rate=0.01,
            beta_1=0.9,
            beta_2=0.999,
            epsilon=1e-6,
            exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"],
        )
    elif optimizer == "lamb":
        tf.logging.info("using lamb")
        optimizer = lamb_optimizer.LAMBOptimizer(
            learning_rate=learning_rate,
            weight_decay_rate=0.01,
            beta_1=0.9,
            beta_2=0.999,
            epsilon=1e-6,
            exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"],
        )
    else:
        raise ValueError("Not supported optimizer: ", optimizer)

    if use_tpu:
        optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)

    tvars = tf.trainable_variables()

    if use_memory_saving_gradients:
        grads = memory_saving_gradients.gradients(loss, tvars)
    else:
        grads = tf.gradients(ys=loss, xs=tvars)

    # This is how bert was pre-trained.
    #(grads, _) = tf.clip_by_global_norm(grads, clip_norm=1.0)

    train_op = optimizer.apply_gradients(zip(grads, tvars),
                                         global_step=global_step)

    # Normally the global step update is done inside of `apply_gradients`.
    # However, neither `AdamWeightDecayOptimizer` nor `LAMBOptimizer` do this.
    # But if you use a different optimizer, you should probably take this line
    # out.
    new_global_step = global_step + 1
    train_op = tf.group(train_op, [global_step.assign(new_global_step)])
    return train_op
Example #6
0
opt = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate)

if accumulate_gradients > 1:
    if use_memory_saving_gradients:
        exit(
            'Memory saving gradients are not implemented for gradient accumulation yet.'
        )
    opt = AccumulatingOptimizer(opt=opt, var_list=train_vars)
    opt_reset = opt.reset()
    opt_compute = opt.compute_gradients(loss)
    opt_apply = opt.apply_gradients()
    summary_loss = tf.compat.v1.summary.scalar('loss', opt_apply)

else:
    if use_memory_saving_gradients:
        opt_grads = memory_saving_gradients.gradients(loss, train_vars)
    else:
        opt_grads = tf.gradients(ys=loss, xs=train_vars)
    opt_grads = list(zip(opt_grads, train_vars))
    opt_apply = opt.apply_gradients(opt_grads)
    summary_loss = tf.compat.v1.summary.scalar('loss', loss)

# opt = custom_optimization.create_optimizer(
#     loss, learning_rate, num_train_steps, num_warmup_steps
# )
# summary_loss = tf.compat.v1.summary.scalar('loss', loss)


def maketree(path):
    try:
        os.makedirs(path)
Example #7
0
def finetune(sess,
             dataset,
             steps=-1,
             model_name='124M',
             model_dir='models',
             combine=50000,
             batch_size=1,
             learning_rate=0.0001,
             accumulate_gradients=5,
             restore_from='latest',
             run_name='run1',
             checkpoint_dir='checkpoint',
             sample_every=100,
             sample_length=1023,
             sample_num=1,
             multi_gpu=False,
             save_every=1000,
             print_every=1,
             max_checkpoints=1,
             use_memory_saving_gradients=False,
             only_train_transformer_layers=False,
             optimizer='adam',
             overwrite=False,
             val_dataset=None,
             val_batch_size=2,
             val_batch_count=40,
             val_every=0
             ):
    """Finetunes the model on the given dataset.

    Adapted from https://github.com/nshepperd/gpt-2/blob/finetuning/train.py.
    See that file for parameter definitions.
    """

    SAMPLE_DIR = 'samples'

    checkpoint_path = os.path.join(checkpoint_dir, run_name)

    def maketree(path):
        try:
            os.makedirs(path)
        except:
            pass

    maketree(checkpoint_path)
    files = [f for f in os.listdir(checkpoint_path)]
    for file in ['hparams.json', 'encoder.json', 'vocab.bpe']:
        try:
            shutil.copyfile(os.path.join(model_dir, model_name, file),
                            os.path.join(checkpoint_path, file))
        except FileNotFoundError as fnf_error:
            print("You need to download the GPT-2 model first via download_gpt2()")
            raise(fnf_error)

    enc = encoder.get_encoder(checkpoint_path)
    hparams = model.default_hparams()
    with open(os.path.join(checkpoint_path, 'hparams.json')) as f:
        hparams.override_from_dict(json.load(f))

    if sample_length > hparams.n_ctx:
        raise ValueError(
            "Can't get samples longer than window size: %s" % hparams.n_ctx)

    context = tf.compat.v1.placeholder(tf.int32, [batch_size, None])
    gpus = []

    if multi_gpu:
        gpus = get_available_gpus()

    output = model.model(hparams=hparams, X=context, gpus=gpus)
    loss = tf.reduce_mean(
        input_tensor=tf.nn.sparse_softmax_cross_entropy_with_logits(
            labels=context[:, 1:], logits=output['logits'][:, :-1]))

	# validation code
    if val_every > 0:
        val_context = tf.placeholder(tf.int32, [val_batch_size, None])
        val_output = model.model(hparams=hparams, X=val_context, reuse=True) # added reuse=True
        val_loss = tf.reduce_mean(
            tf.nn.sparse_softmax_cross_entropy_with_logits(
                labels=val_context[:, 1:], logits=val_output['logits'][:, :-1]))
        val_loss_summary = tf.summary.scalar('val_loss', val_loss)


    tf_sample = sample.sample_sequence(
        hparams=hparams,
        length=sample_length,
        context=context,
        batch_size=batch_size,
        temperature=1.0,
        top_k=40)

    all_vars = [v for v in tf.compat.v1.trainable_variables() if 'model' in v.name]
    train_vars = [v for v in all_vars if '/h' in v.name] if only_train_transformer_layers else all_vars

    if optimizer == 'adam':
        opt = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate)
    elif optimizer == 'sgd':
        opt = tf.compat.v1.train.GradientDescentOptimizer(learning_rate=learning_rate)

    if accumulate_gradients > 1:
        if use_memory_saving_gradients:
            exit("Memory saving gradients are not implemented for gradient accumulation yet.")
        opt = AccumulatingOptimizer(
            opt=opt,
            var_list=train_vars)
        opt_reset = opt.reset()
        opt_compute = opt.compute_gradients(loss)
        opt_apply = opt.apply_gradients()
        summary_loss = tf.compat.v1.summary.scalar('loss', opt_apply)
    else:
        if use_memory_saving_gradients:
            opt_grads = memory_saving_gradients.gradients(loss, train_vars)
        else:
            opt_grads = tf.gradients(ys=loss, xs=train_vars)
        opt_grads = list(zip(opt_grads, train_vars))
        opt_apply = opt.apply_gradients(opt_grads)
        summary_loss = tf.compat.v1.summary.scalar('loss', loss)

    summary_log = tf.compat.v1.summary.FileWriter(checkpoint_path)

    saver = tf.compat.v1.train.Saver(
        var_list=all_vars,
        max_to_keep=max_checkpoints)
    sess.run(tf.compat.v1.global_variables_initializer())

    if restore_from == 'latest':
        ckpt = tf.train.latest_checkpoint(checkpoint_path)
        if ckpt is None:
            # Get fresh GPT weights if new run.
            ckpt = tf.train.latest_checkpoint(
                os.path.join(model_dir, model_name))
    elif restore_from == 'fresh':
        ckpt = tf.train.latest_checkpoint(
            os.path.join(model_dir, model_name))
    else:
        ckpt = tf.train.latest_checkpoint(restore_from)
    print('Loading checkpoint', ckpt)
    saver.restore(sess, ckpt)

    print('Loading dataset...')
    chunks = load_dataset(enc, dataset, combine)
    data_sampler = Sampler(chunks)
    
    # validation code
    if val_every > 0:
        if val_dataset:
            val_chunks = load_dataset(enc, val_dataset, combine)
        else:
            val_chunks = chunks    
    
    
    print('dataset has', data_sampler.total_size, 'tokens')
    print('Training...')
    
    # validation code
    if val_every > 0:
        # Sample from validation set once with fixed seed to make
        # it deterministic during training as well as across runs.
        val_data_sampler = Sampler(val_chunks, seed=1)
        val_batches = [[val_data_sampler.sample(1024) for _ in range(val_batch_size)]
                       for _ in range(val_batch_count)]

    counter = 1
    counter_path = os.path.join(checkpoint_path, 'counter')
    if os.path.exists(counter_path) and restore_from == 'latest':
        # Load the step number if we're resuming a run
        # Add 1 so we don't immediately try to save again
        with open(counter_path, 'r') as fp:
            counter = int(fp.read()) + 1
    counter_base = counter

    def save():
        maketree(checkpoint_path)
        print(
            'Saving',
            os.path.join(checkpoint_path,
                         'model-{}').format(counter-1))
        saver.save(
            sess,
            os.path.join(checkpoint_path, 'model'),
            global_step=counter-1)
        with open(counter_path, 'w') as fp:
            fp.write(str(counter-1) + '\n')

    def generate_samples():
        context_tokens = data_sampler.sample(1)
        all_text = []
        index = 0
        while index < sample_num:
            out = sess.run(
                tf_sample,
                feed_dict={context: batch_size * [context_tokens]})
            for i in range(min(sample_num - index, batch_size)):
                text = enc.decode(out[i])
                text = '======== SAMPLE {} ========\n{}\n'.format(
                    index + 1, text)
                all_text.append(text)
                index += 1
        print(text)
        maketree(os.path.join(SAMPLE_DIR, run_name))
        with open(
                os.path.join(SAMPLE_DIR, run_name,
                             'samples-{}').format(counter), 'w') as fp:
            fp.write('\n'.join(all_text))
    
    # validation code        
    def validation():
        print('Calculating validation loss...')
        losses = []
        for batch in tqdm(val_batches):
            losses.append(sess.run(val_loss, feed_dict={val_context: batch}))
        v_val_loss = np.mean(losses)
        v_summary = sess.run(val_loss_summary, feed_dict={val_loss: v_val_loss})
        summary_log.add_summary(v_summary, counter)
        summary_log.flush()
        print(
            '[{counter} | {time:2.2f}] validation loss = {loss:2.2f}'
            .format(
                counter=counter,
                time=time.time() - start_time,
                loss=v_val_loss))

    def sample_batch():
        return [data_sampler.sample(1024) for _ in range(batch_size)]

    if overwrite and restore_from == 'latest':
        for file in files:
            if file.startswith('model') or file.startswith('events'):
                os.remove(os.path.join(checkpoint_path, file))
        save()

    avg_loss = (0.0, 0.0)
    start_time = time.time()

    if steps:
        steps = int(steps)
    
    try:
        while True:
            if steps > 0 and counter == (counter_base + steps):
                save()
                return
            if (counter - 1) % save_every == 0 and counter > 1:
                save()
            if (counter - 1) % sample_every == 0 and counter > 1:
                generate_samples()
            
            # validation code    
            if val_every > 0 and (counter % val_every == 0 or counter == 1):
                validation()

            if accumulate_gradients > 1:
                sess.run(opt_reset)
                for _ in range(accumulate_gradients):
                    sess.run(
                        opt_compute, feed_dict={context: sample_batch()})
                (v_loss, v_summary) = sess.run((opt_apply, summary_loss))
            else:
                (_, v_loss, v_summary) = sess.run(
                    (opt_apply, loss, summary_loss),
                    feed_dict={context: sample_batch()})

            summary_log.add_summary(v_summary, counter)

            if (counter % print_every == 0) or counter == 1:
                avg_loss = (avg_loss[0] * 0.99 + v_loss,
                            avg_loss[1] * 0.99 + 1.0)

                print(
                    '[{counter} | {time:2.2f}] loss={loss:2.2f} avg={avg:2.2f}'
                    .format(
                        counter=counter,
                        time=time.time() - start_time,
                        loss=v_loss,
                        avg=avg_loss[0] / avg_loss[1]))

            counter += 1
    except KeyboardInterrupt:
        print('interrupted')
        save()
Example #8
0
    def opt_compute_gradients(self,
                              loss,
                              var_list=None,
                              gate_gradients=GATE_OP,
                              aggregation_method=None,
                              colocate_gradients_with_ops=False,
                              grad_loss=None):
        """Compute gradients of `loss` for the variables in `var_list`.
        This is the first part of `minimize()`.  It returns a list
        of (gradient, variable) pairs where "gradient" is the gradient
        for "variable".  Note that "gradient" can be a `Tensor`, an
        `IndexedSlices`, or `None` if there is no gradient for the
        given variable.
        Args:
          loss: A Tensor containing the value to minimize or a callable taking
            no arguments which returns the value to minimize. When eager execution
            is enabled it must be a callable.
          var_list: Optional list or tuple of `tf.Variable` to update to minimize
            `loss`.  Defaults to the list of variables collected in the graph
            under the key `GraphKeys.TRAINABLE_VARIABLES`.
          gate_gradients: How to gate the computation of gradients.  Can be
            `GATE_NONE`, `GATE_OP`, or `GATE_GRAPH`.
          aggregation_method: Specifies the method used to combine gradient terms.
            Valid values are defined in the class `AggregationMethod`.
          colocate_gradients_with_ops: If True, try colocating gradients with
            the corresponding op.
          grad_loss: Optional. A `Tensor` holding the gradient computed for `loss`.
        Returns:
          A list of (gradient, variable) pairs. Variable is always present, but
          gradient can be `None`.
        Raises:
          TypeError: If `var_list` contains anything else than `Variable` objects.
          ValueError: If some arguments are invalid.
          RuntimeError: If called with eager execution enabled and `loss` is
            not callable.
        @compatibility(eager)
        When eager execution is enabled, `gate_gradients`, `aggregation_method`,
        and `colocate_gradients_with_ops` are ignored.
        @end_compatibility
        """
        if callable(loss):
            with backprop.GradientTape() as tape:
                if var_list is not None:
                    tape.watch(var_list)
                loss_value = loss()

                # Scale loss if using a "mean" loss reduction and multiple replicas.
                # Have to be careful to call distribute_lib.get_loss_reduction()
                # *after* loss() is evaluated, so we know what loss reduction it uses.
                # TODO(josh11b): Test that we handle weight decay in a reasonable way.
                loss_value = self._scale_loss(loss_value)

            if var_list is None:
                var_list = tape.watched_variables()
            # TODO(jhseu): Figure out why GradientTape's gradients don't require loss
            # to be executed.
            with ops.control_dependencies([loss_value]):
                grads = tape.gradient(loss_value, var_list, grad_loss)
            return list(zip(grads, var_list))

        # Non-callable/Tensor loss case
        if context.executing_eagerly():
            raise RuntimeError(
                "`loss` passed to Optimizer.compute_gradients should "
                "be a function when eager execution is enabled.")

        # Scale loss if using a "mean" loss reduction and multiple replicas.
        loss = self._scale_loss(loss)

        if gate_gradients not in [
                Optimizer.GATE_NONE, Optimizer.GATE_OP, Optimizer.GATE_GRAPH
        ]:
            raise ValueError(
                "gate_gradients must be one of: Optimizer.GATE_NONE, "
                "Optimizer.GATE_OP, Optimizer.GATE_GRAPH.  Not %s" %
                gate_gradients)
        self._assert_valid_dtypes([loss])
        if grad_loss is not None:
            self._assert_valid_dtypes([grad_loss])
        if var_list is None:
            var_list = (
                variables.trainable_variables() +
                ops.get_collection(ops.GraphKeys.TRAINABLE_RESOURCE_VARIABLES))
        else:
            var_list = nest.flatten(var_list)
        # pylint: disable=protected-access
        var_list += ops.get_collection(ops.GraphKeys._STREAMING_MODEL_PORTS)
        # pylint: enable=protected-access
        processors = [_get_processor(v) for v in var_list]
        if not var_list:
            raise ValueError("No variables to optimize.")
        var_refs = [p.target() for p in processors]
        grads = memory_saving_gradients.gradients(
            loss,
            var_refs,
            grad_ys=grad_loss,
            gate_gradients=(gate_gradients == Optimizer.GATE_OP),
            aggregation_method=aggregation_method,
            colocate_gradients_with_ops=colocate_gradients_with_ops)
        if gate_gradients == Optimizer.GATE_GRAPH:
            grads = control_flow_ops.tuple(grads)
        grads_and_vars = list(zip(grads, var_list))
        self._assert_valid_dtypes([
            v for g, v in grads_and_vars
            if g is not None and v.dtype != dtypes.resource
        ])
        return grads_and_vars
Example #9
0
def finetune(sess,
             dataset,
             steps=-1,
             model_name='124M',
             model_dir='models',
             combine=50000,
             batch_size=1,
             learning_rate=0.0001,
             accumulate_gradients=5,
             restore_from='latest',
             run_name='run1',
             checkpoint_dir='checkpoint',
             sample_every=100,
             sample_length=1023,
             sample_num=1,
             save_every=1000,
             print_every=1,
             max_checkpoints=1,
             use_memory_saving_gradients=False,
             only_train_transformer_layers=False,
             optimizer='adam',
             overwrite=False,
             mixed_precision=False):
    """Finetunes the model on the given dataset.

    Adapted from https://github.com/nshepperd/gpt-2/blob/finetuning/train.py.
    See that file for parameter definitions.
    """

    SAMPLE_DIR = 'samples'

    checkpoint_path = os.path.join(checkpoint_dir, run_name)

    def maketree(path):
        try:
            os.makedirs(path)
        except:
            pass

    maketree(checkpoint_path)
    files = [f for f in os.listdir(checkpoint_path)]
    for file in ['hparams.json', 'encoder.json', 'vocab.bpe']:
        try:
            shutil.copyfile(os.path.join(model_dir, model_name, file),
                            os.path.join(checkpoint_path, file))
        except FileNotFoundError as fnf_error:
            print(
                "You need to download the GPT-2 model first via download_gpt2()"
            )
            raise (fnf_error)

    enc = encoder.get_encoder(checkpoint_path)
    hparams = model.default_hparams()
    with open(os.path.join(checkpoint_path, 'hparams.json')) as f:
        hparams.override_from_dict(json.load(f))

    if sample_length > hparams.n_ctx:
        raise ValueError("Can't get samples longer than window size: %s" %
                         hparams.n_ctx)

    if model_name not in ['117M', '124M']:
        use_memory_saving_gradients = True
        only_train_transformer_layers = True
        accumulate_gradients = 1

    context = tf.compat.v1.placeholder(tf.int32, [batch_size, None])
    output = model.model(hparams=hparams, X=context)
    loss = tf.reduce_mean(
        input_tensor=tf.nn.sparse_softmax_cross_entropy_with_logits(
            labels=context[:, 1:], logits=output['logits'][:, :-1]))

    tf_sample = sample.sample_sequence(hparams=hparams,
                                       length=sample_length,
                                       context=context,
                                       batch_size=batch_size,
                                       temperature=1.0,
                                       top_k=40)

    all_vars = [
        v for v in tf.compat.v1.trainable_variables() if 'model' in v.name
    ]
    train_vars = [v for v in all_vars if '/h' in v.name
                  ] if only_train_transformer_layers else all_vars

    if optimizer == 'adam':
        opt = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate)
    elif optimizer == 'sgd':
        opt = tf.compat.v1.train.GradientDescentOptimizer(
            learning_rate=learning_rate)
    elif optimizer == 'sm3':
        opt = SM3Optimizer(learning_rate=learning_rate, momentum=0.9)
    elif optimizer == 'adafactor':
        opt = AdafactorOptimizer(learning_rate=learning_rate)

    def mp_check_tf_version():
        # check TensorFlow >= 1.14
        tf_version_list = tf.__version__.split(".")
        if int(tf_version_list[0]) < 2:
            return int(tf_version_list[1]) >= 14

    def mp_check_tensor_core_gpu_present():
        from tensorflow.python.client import device_lib
        # check Compute Capability >= 7.0
        local_device_protos = device_lib.list_local_devices()
        for line in local_device_protos:
            if "compute capability" in str(line):
                compute_capability = float(
                    line.physical_device_desc.split("compute capability: ")
                    [-1])
                if compute_capability >= 7.0:
                    return True

    if mixed_precision and mp_check_tf_version(
    ) and mp_check_tensor_core_gpu_present():
        if isinstance(opt, tf.keras.optimizers.Optimizer) or isinstance(
                opt, tf.compat.v1.train.Optimizer):
            opt = tf.compat.v1.train.experimental.enable_mixed_precision_graph_rewrite(
                opt)
        else:
            mixed_precision = False
    else:
        mixed_precision = False

    print('Mixed precision enabled: %s' % mixed_precision)

    # Fix warning: https://github.com/tensorflow/tensorflow/blob/233d3d/tensorflow/python/training/experimental/mixed_precision.py#L355-L357
    if sess is None:
        sess = start_tf_sess()

    if accumulate_gradients > 1:
        if use_memory_saving_gradients:
            exit(
                "Memory saving gradients are not implemented for gradient accumulation yet."
            )
        opt = AccumulatingOptimizer(opt=opt, var_list=train_vars)
        opt_reset = opt.reset()
        opt_compute = opt.compute_gradients(loss)
        opt_apply = opt.apply_gradients()
        summary_loss = tf.compat.v1.summary.scalar('loss', opt_apply)
    else:
        if use_memory_saving_gradients:
            opt_grads = memory_saving_gradients.gradients(loss, train_vars)
        else:
            opt_grads = tf.gradients(ys=loss, xs=train_vars)
        opt_grads = list(zip(opt_grads, train_vars))
        opt_apply = opt.apply_gradients(opt_grads)
        summary_loss = tf.compat.v1.summary.scalar('loss', loss)

    summary_log = tf.compat.v1.summary.FileWriter(checkpoint_path)

    saver = tf.compat.v1.train.Saver(var_list=all_vars,
                                     max_to_keep=max_checkpoints)
    sess.run(tf.compat.v1.global_variables_initializer())

    if restore_from == 'latest':
        ckpt = tf.train.latest_checkpoint(checkpoint_path)
        if ckpt is None:
            # Get fresh GPT weights if new run.
            ckpt = tf.train.latest_checkpoint(
                os.path.join(model_dir, model_name))
    elif restore_from == 'fresh':
        ckpt = tf.train.latest_checkpoint(os.path.join(model_dir, model_name))
    else:
        ckpt = tf.train.latest_checkpoint(restore_from)
    print('Loading checkpoint', ckpt)
    saver.restore(sess, ckpt)

    print('Loading dataset...')
    chunks = load_dataset(enc, dataset, combine)
    data_sampler = Sampler(chunks)
    print('dataset has', data_sampler.total_size, 'tokens')
    print('Training...')

    counter = 1
    counter_path = os.path.join(checkpoint_path, 'counter')
    if os.path.exists(counter_path) and restore_from == 'latest':
        # Load the step number if we're resuming a run
        # Add 1 so we don't immediately try to save again
        with open(counter_path, 'r') as fp:
            counter = int(fp.read()) + 1
    counter_base = counter

    def save():
        maketree(checkpoint_path)
        print('Saving',
              os.path.join(checkpoint_path, 'model-{}').format(counter - 1))
        saver.save(sess,
                   os.path.join(checkpoint_path, 'model'),
                   global_step=counter - 1)
        with open(counter_path, 'w') as fp:
            fp.write(str(counter - 1) + '\n')

    def generate_samples():
        context_tokens = data_sampler.sample(1)
        all_text = []
        index = 0
        while index < sample_num:
            out = sess.run(tf_sample,
                           feed_dict={context: batch_size * [context_tokens]})
            for i in range(min(sample_num - index, batch_size)):
                text = enc.decode(out[i])
                text = '======== SAMPLE {} ========\n{}\n'.format(
                    index + 1, text)
                all_text.append(text)
                index += 1
        print(text)
        maketree(os.path.join(SAMPLE_DIR, run_name))
        with open(
                os.path.join(SAMPLE_DIR, run_name,
                             'samples-{}').format(counter), 'w') as fp:
            fp.write('\n'.join(all_text))

    def sample_batch():
        return [data_sampler.sample(1024) for _ in range(batch_size)]

    if overwrite and restore_from == 'latest':
        for file in files:
            if file.startswith('model') or file.startswith('events'):
                os.remove(os.path.join(checkpoint_path, file))
        save()

    avg_loss = (0.0, 0.0)
    start_time = time.time()

    if steps:
        steps = int(steps)

    try:
        while True:
            if steps > 0 and counter == (counter_base + steps):
                save()
                return
            if (counter - 1) % save_every == 0 and counter > 1:
                save()
            if (counter - 1) % sample_every == 0 and counter > 1:
                generate_samples()

            if accumulate_gradients > 1:
                sess.run(opt_reset)
                for _ in range(accumulate_gradients):
                    sess.run(opt_compute, feed_dict={context: sample_batch()})
                (v_loss, v_summary) = sess.run((opt_apply, summary_loss))
            else:
                (_, v_loss, v_summary) = sess.run(
                    (opt_apply, loss, summary_loss),
                    feed_dict={context: sample_batch()})

            summary_log.add_summary(v_summary, counter)

            if counter % print_every == 0:
                avg_loss = (avg_loss[0] * 0.99 + v_loss,
                            avg_loss[1] * 0.99 + 1.0)

                print(
                    '[{counter} | {time:2.2f}] loss={loss:2.2f} avg={avg:2.2f}'
                    .format(counter=counter,
                            time=time.time() - start_time,
                            loss=v_loss,
                            avg=avg_loss[0] / avg_loss[1]))

            counter += 1
    except KeyboardInterrupt:
        print('interrupted')
        save()