lr = 1e-2 decay = (1, 0.2) n_epoch = 5 batch_size = 1000 # data x_tr = np.load('data/x_tr.npy') y_tr = np.load('data/y_tr.npy') x_te = np.load('data/x_te.npy') y_te = np.load('data/y_te.npy') y_tr = y_tr.astype(int) y_te = y_te.astype(int) scaler_x = StandardScaler() x_tr = scaler_x.fit_transform(x_tr) / 3 x_te = scaler_x.transform(x_te) / 3 x_tr = make_tensor(x_tr, 'x_tr') y_tr = make_tensor(y_tr, 'y_tr', dtype=tf.int64) x_te = make_tensor(x_te, 'x_te') y_te = make_tensor(y_te, 'y_te', dtype=tf.int64) # batches x_batch, y_batch = _make_batches(x_tr, y_tr, batch_size) x_te_batch, y_te_batch = _make_batches(x_te, y_te, batch_size, test=True) # Loss y_batch_oh = tf.one_hot(y_batch, 2) pred = net.predict(x_batch) loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=y_batch_oh, logits=pred)) pred_labels = tf.argmax(pred, axis=1)
np.save('W1.npy', W1) np.save('b1.npy', b1) np.save('W2.npy', W2) np.save('b2.npy', b2) np.save('W3.npy', W3) np.save('b3.npy', b3) np.save('W4.npy', W4) with tf.Graph().as_default(): data_dir = "data_reg/" net = NN(H1=20, H2=20, d=4, p=0.5) lr = 1e-2 # data x_tr, y_tr, x_te, y_te = prepare_data(data_dir, mode='numpy') x_tr = make_tensor(x_tr, 'x_tr') y_tr = make_tensor(y_tr, 'y_tr') x_te = make_tensor(x_te, 'x_te') y_te = make_tensor(y_te, 'y_te') pred_te = net.predict(x_te) r2_te = r2(pred_te, y_te) mse_te = mse(pred_te, y_te) decay = (100, 0.2) n_epoch = 300 batch_size = 200 sample = tf.train.slice_input_producer([x_tr, y_tr]) x_batch, y_batch = tf.train.batch(sample, batch_size) pred = net.predict(x_batch) loss = mse(pred, y_batch)